Journal of High Energy Physics

, 2018:82 | Cite as

Comparison of holographic and field theoretic complexities for time dependent thermofield double states

  • Run-Qiu Yang
  • Chao Niu
  • Cheng-Yong Zhang
  • Keun-Young Kim
Open Access
Regular Article - Theoretical Physics
  • 16 Downloads

Abstract

We compute the time-dependent complexity of the thermofield double states by four different proposals: two holographic proposals based on the “complexity-action” (CA) conjecture and “complexity-volume” (CV) conjecture, and two quantum field theoretic proposals based on the Fubini-Study metric (FS) and Finsler geometry (FG). We find that four different proposals yield both similarities and differences, which will be useful to deepen our understanding on the complexity and sharpen its definition. In particular, at early time the complexity linearly increase in the CV and FG proposals, linearly decreases in the FS proposal, and does not change in the CA proposal. In the late time limit, the CA, CV and FG proposals all show that the growth rate is 2E/(πℏ) saturating the Lloyd’s bound, while the FS proposal shows the growth rate is zero. It seems that the holographic CV conjecture and the field theoretic FG method are more correlated.

Keywords

Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from Entanglement in Holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    A. Einstein and N. Rosen, The particle problem in the general theory of relativity, Phys. Rev. 48 (1935) 73 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016) 44 [arXiv:1403.5695] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    L. Susskind, Entanglement is not enough, Fortsch. Phys. 64 (2016) 49 [arXiv:1411.0690] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].
  10. [10]
    M. Alishahiha, Holographic Complexity, Phys. Rev. D 92 (2015) 126009 [arXiv:1509.06614] [INSPIRE].
  11. [11]
    O. Ben-Ami and D. Carmi, On volumes of subregions in holography and complexity, JHEP 11 (2016) 129 [arXiv:1609.02514] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    J. Couch, W. Fischler and P.H. Nguyen, Noether charge, black hole volume and complexity, JHEP 03 (2017) 119 [arXiv:1610.02038] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].
  14. [14]
    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Towards Complexity for Quantum Field Theory States, arXiv:1707.08582 [INSPIRE].
  16. [16]
    R.-Q. Yang, A Complexity for Quantum Field Theory States and Application in Thermofield Double States, arXiv:1709.00921 [INSPIRE].
  17. [17]
    P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Anti-de Sitter Space from Optimization of Path Integrals in Conformal Field Theories, Phys. Rev. Lett. 119 (2017) 071602 [arXiv:1703.00456] [INSPIRE].
  18. [18]
    P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Liouville action as path-integral complexity: from continuous tensor networks to AdS/CFT, JHEP 11 (2017) 097 [arXiv:1706.07056] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    K. Shizume, T. Nakajima, R. Nakayama and Y. Takahashi, Quantum computational Riemannian and sub-Riemannian geodesics, Prog. Theor. Phys. 127 (2012) 997 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    M.A. Nielsen, A geometric approach to quantum circuit lower bounds, Quantum Info. Comput. 6 (2006) 213.Google Scholar
  21. [21]
    M.R. Dowling and M. A. Nielsen, The geometry of quantum computation, Quantum Info. Comput. 8 (2008) 861.MathSciNetMATHGoogle Scholar
  22. [22]
    R.A. Jefferson and R.C. Myers, Circuit complexity in quantum field theory, JHEP 10 (2017) 107 [arXiv:1707.08570] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    D. Carmi, S. Chapman, H. Marrochio, R.C. Myers and S. Sugishita, On the time dependence of holographic complexity, JHEP 11 (2017) 188 [arXiv:1709.10184] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Lloyd, Ultimate physical limits to computation, Nature 406 (2000) 1047.ADSCrossRefGoogle Scholar
  25. [25]
    R.-G. Cai, S.-M. Ruan, S.-J. Wang, R.-Q. Yang and R.-H. Peng, Action growth for AdS black holes, JHEP 09 (2016) 161 [arXiv:1606.08307] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    R.-Q. Yang, Strong energy condition and complexity growth bound in holography, Phys. Rev. D 95 (2017) 086017 [arXiv:1610.05090] [INSPIRE].
  27. [27]
    R.-G. Cai, M. Sasaki and S.-J. Wang, Action growth of charged black holes with a single horizon, Phys. Rev. D 95 (2017) 124002 [arXiv:1702.06766] [INSPIRE].
  28. [28]
    D. Carmi, R.C. Myers and P. Rath, Comments on holographic complexity, JHEP 03 (2017) 118 [arXiv:1612.00433] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    S. Chapman, H. Marrochio and R.C. Myers, Complexity of formation in holography, JHEP 01 (2017) 062 [arXiv:1610.08063] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    R.-Q. Yang, C. Niu and K.-Y. Kim, Surface counterterms and regularized holographic complexity, JHEP 09 (2017) 042 [arXiv:1701.03706] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    K. Parattu, S. Chakraborty, B.R. Majhi and T. Padmanabhan, A Boundary Term for the Gravitational Action with Null Boundaries, Gen. Rel. Grav. 48 (2016) 94 [arXiv:1501.01053] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].
  33. [33]
    F. Hopfmüller and L. Freidel, Gravity Degrees of Freedom on a Null Surface, Phys. Rev. D 95 (2017) 104006 [arXiv:1611.03096] [INSPIRE].
  34. [34]
    I. Jubb, J. Samuel, R. Sorkin and S. Surya, Boundary and Corner Terms in the Action for General Relativity, Class. Quant. Grav. 34 (2017) 065006 [arXiv:1612.00149] [INSPIRE].
  35. [35]
    A. Reynolds and S.F. Ross, Divergences in Holographic Complexity, Class. Quant. Grav. 34 (2017) 105004 [arXiv:1612.05439] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    G. Hayward, Gravitational action for spacetimes with nonsmooth boundaries, Phys. Rev. D 47 (1993) 3275.Google Scholar
  37. [37]
    T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, Distance between Quantum States and Gauge-Gravity Duality, Phys. Rev. Lett. 115 (2015) 261602 [arXiv:1507.07555] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Sinamuli and R.B. Mann, Geons and the Quantum Information Metric, Phys. Rev. D 96 (2017) 026014 [arXiv:1612.06880] [INSPIRE].
  40. [40]
    I. Bengtsson, Geometry of quantum states: an introduction to quantum entanglement, Cambridge University Press, New York U.S.A. (2006).Google Scholar
  41. [41]
    A. Klimov, A group-theoretical approach to quantum optics: models of atom-field interactions, Wiley-VCH, Weinheim Germany (2009).Google Scholar
  42. [42]
    A.R. Brown and L. Susskind, The Second Law of Quantum Complexity, arXiv:1701.01107 [INSPIRE].
  43. [43]
    K. Hashimoto, N. Iizuka and S. Sugishita, Time evolution of complexity in Abelian gauge theories, Phys. Rev. D 96 (2017) 126001 [arXiv:1707.03840] [INSPIRE].
  44. [44]
    M.M. Qaemmaqami, Complexity growth in minimal massive 3D gravity, Phys. Rev. D 97 (2018) 026006 [arXiv:1709.05894] [INSPIRE].
  45. [45]
    L.C.B. Crispino, A. Higuchi and G.E.A. Matsas, The Unruh effect and its applications, Rev. Mod. Phys. 80 (2008) 787 [arXiv:0710.5373] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Run-Qiu Yang
    • 1
  • Chao Niu
    • 2
  • Cheng-Yong Zhang
    • 3
    • 4
  • Keun-Young Kim
    • 2
  1. 1.Quantum Universe Center, Korea Institute for Advanced StudySeoulSouth Korea
  2. 2.School of Physics and Chemistry, Gwangju Institute of Science and TechnologyGwangjuSouth Korea
  3. 3.Department of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina
  4. 4.Center for High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations