Journal of High Energy Physics

, 2018:61 | Cite as

Squashed, magnetized black holes in D = 5 minimal gauged supergravity

  • Jose Luis Blázquez-Salcedo
  • Jutta Kunz
  • Francisco Navarro-Lérida
  • Eugen Radu
Open Access
Regular Article - Theoretical Physics
  • 24 Downloads

Abstract

We construct a new class of black hole solutions in five-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant. These configurations are cohomogeneity-1, with two equal-magnitude angular momenta. In the generic case, they possess a non-vanishing magnetic potential at infinity with a boundary metric which is the product of time and a squashed three-dimensional sphere. Both extremal and non-extremal black holes are studied. The non-extremal black holes satisfying a certain relation between electric charge, angular momenta and magnitude of the magnetic potential at infinity do not trivialize in the limit of vanishing event horizon size, becoming particle-like (non-topological) solitonic configurations. Among the extremal black holes, we show the existence of a new one-parameter family of supersymmetric solutions, which bifurcate from a critical Gutowski-Reall configuration.

Keywords

Black Holes Supergravity Models Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    J.P. Gauntlett, E. O Colgain and O. Varela, Properties of some conformal field theories with M-theory duals, JHEP 02 (2007) 049 [hep-th/0611219] [INSPIRE].
  5. [5]
    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301 [hep-th/0506029] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    M. Cvetič, H. Lü and C.N. Pope, Charged Kerr-de Sitter black holes in five dimensions, Phys. Lett. B 598 (2004) 273 [hep-th/0406196] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, Non-extremal rotating black holes in five-dimensional gauged supergravity, Phys. Lett. B 644 (2007) 192 [hep-th/0606213] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, Five-dimensional gauged supergravity black holes with independent rotation parameters, Phys. Rev. D 72 (2005) 041901 [hep-th/0505112] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    M. Cvetič, H. Lü and C.N. Pope, Charged rotating black holes in five dimensional U(1)3 gauged N = 2 supergravity, Phys. Rev. D 70 (2004) 081502 [hep-th/0407058] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    J.B. Gutowski and H.S. Reall, Supersymmetric AdS 5 black holes, JHEP 02 (2004) 006 [hep-th/0401042] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.L. Blázquez-Salcedo, J. Kunz, F. Navarro-Lérida and E. Radu, AdS 5 magnetized solutions in minimal gauged supergravity, Phys. Lett. B 771 (2017) 52 [arXiv:1703.04163] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  12. [12]
    E. D’Hoker and P. Kraus, Charged magnetic brane solutions in AdS 5 and the fate of the third law of thermodynamics, JHEP 03 (2010) 095 [arXiv:0911.4518] [INSPIRE].CrossRefMATHGoogle Scholar
  13. [13]
    E. D’Hoker and P. Kraus, Magnetic brane solutions in AdS, JHEP 10 (2009) 088 [arXiv:0908.3875] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  14. [14]
    E. D’Hoker and P. Kraus, Magnetic field induced quantum criticality via new asymptotically AdS 5 solutions, Class. Quant. Grav. 27 (2010) 215022 [arXiv:1006.2573] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    K. Copsey and G.T. Horowitz, Gravity dual of gauge theory on S 2 × S 1 × R, JHEP 06 (2006) 021 [hep-th/0602003] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M.M. Caldarelli, R. Emparan and M.J. Rodriguez, Black rings in (anti)-de Sitter space, JHEP 11 (2008) 011 [arXiv:0806.1954] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    P. Figueras and S. Tunyasuvunakool, Black rings in global anti-de Sitter space, JHEP 03 (2015) 149 [arXiv:1412.5680] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  18. [18]
    R.B. Mann, E. Radu and C. Stelea, Black string solutions with negative cosmological constant, JHEP 09 (2006) 073 [hep-th/0604205] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    D. Cassani and D. Martelli, The gravity dual of supersymmetric gauge theories on a squashed S 1 × S 3, JHEP 08 (2014) 044 [arXiv:1402.2278] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J.L. Blázquez-Salcedo, J. Kunz, F. Navarro-Lérida and E. Radu, New black holes in D = 5 minimal gauged supergravity: deformed boundaries and ‘frozen’ horizons, arXiv:1711.08292 [INSPIRE].
  21. [21]
    J.L. Blázquez-Salcedo, J. Kunz, F. Navarro-Lérida and E. Radu, Charged rotating black holes in Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant, Phys. Rev. D 95 (2017) 064018 [arXiv:1610.05282] [INSPIRE].ADSGoogle Scholar
  22. [22]
    P.G. Nedkova and S.S. Yazadjiev, Magnetized black hole on Taub-NUT instanton, Phys. Rev. D 85 (2012) 064021 [arXiv:1112.3326] [INSPIRE].ADSGoogle Scholar
  23. [23]
    P.G. Nedkova and S.S. Yazadjiev, New magnetized squashed black holes — thermodynamics and Hawking radiation, Eur. Phys. J. C 73 (2013) 2377 [arXiv:1211.5249] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, Rotating black holes in gauged supergravities: thermodynamics, supersymmetric limits, topological solitons and time machines, hep-th/0504080 [INSPIRE].
  25. [25]
    B. Sahoo and H.-U. Yee, Electrified plasma in AdS/CFT correspondence, JHEP 11 (2010) 095 [arXiv:1004.3541] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    C. Fefferman and R. Graham, Conformal invariants, in Élie Cartan et les mathématiques d’aujourd’hui, Astérisque, France, (1985), pg. 95.Google Scholar
  27. [27]
    A. Bernamonti, M.M. Caldarelli, D. Klemm, R. Olea, C. Sieg and E. Zorzan, Black strings in AdS 5, JHEP 01 (2008) 061 [arXiv:0708.2402] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, Holographic renormalization and supersymmetry, JHEP 02 (2017) 132 [arXiv:1612.06761] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    K. Skenderis, Asymptotically anti-de Sitter space-times and their stress energy tensor, Int. J. Mod. Phys. A 16 (2001) 740 [hep-th/0010138] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  31. [31]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000) 125 [hep-th/9812032] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    M. Taylor, More on counterterms in the gravitational action and anomalies, hep-th/0002125 [INSPIRE].
  35. [35]
    J.L. Blázquez-Salcedo, J. Kunz, F. Navarro-Lérida and E. Radu, Radially excited rotating black holes in Einstein-Maxwell-Chern-Simons theory, Phys. Rev. D 92 (2015) 044025 [arXiv:1506.07802] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    J. Kunz, F. Navarro-Lérida and J. Viebahn, Charged rotating black holes in odd dimensions, Phys. Lett. B 639 (2006) 362 [hep-th/0605075] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    J. Kunz and F. Navarro-Lérida, Negative horizon mass for rotating black holes, Phys. Lett. B 643 (2006) 55 [hep-th/0610036] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    J. Kunz, F. Navarro-Lérida and E. Radu, Higher dimensional rotating black holes in Einstein-Maxwell theory with negative cosmological constant, Phys. Lett. B 649 (2007) 463 [gr-qc/0702086] [INSPIRE].
  39. [39]
    U. Ascher, J. Christiansen and R.D. Russell, A collocation solver for mixed order systems of boundary value problems, Math. Comput. 33 (1979) 659 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    U. Ascher, J. Christiansen and R.D. Russell, Collocation software for boundary-value ODEs, ACM Trans. Math. Software 7 (1981) 209.CrossRefMATHGoogle Scholar
  41. [41]
    H. Ishihara and K. Matsuno, Kaluza-Klein black holes with squashed horizons, Prog. Theor. Phys. 116 (2006) 417 [hep-th/0510094] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    Y. Brihaye, J. Kunz and E. Radu, From black strings to black holes: nuttier and squashed AdS 5 solutions, JHEP 08 (2009) 025 [arXiv:0904.1566] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    K. Murata, T. Nishioka and N. Tanahashi, Warped AdS 5 black holes and dual CFTs, Prog. Theor. Phys. 121 (2009) 941 [arXiv:0901.2574] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  44. [44]
    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    Y. Brihaye, T. Delsate and E. Radu, On the stability of AdS black strings, Phys. Lett. B 662 (2008) 264 [arXiv:0710.4034] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    M.M. Som and A.K. Raychaudhuri, Cylindrically symmetric charged dust distributions in rigid rotation in general relativity, Proc. Roy. Soc. Lond. A 304 (1968) 81.ADSCrossRefGoogle Scholar
  47. [47]
    D. Cassani and D. Martelli, Supersymmetry on curved spaces and superconformal anomalies, JHEP 10 (2013) 025 [arXiv:1307.6567] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    C. Herdeiro and E. Radu, Anti-de-Sitter regular electric multipoles: towards Einstein-Maxwell-AdS solitons, Phys. Lett. B 749 (2015) 393 [arXiv:1507.04370] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  49. [49]
    C. Herdeiro and E. Radu, Einstein-Maxwell-anti-de-Sitter spinning solitons, Phys. Lett. B 757 (2016) 268 [arXiv:1602.06990] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  50. [50]
    C.A. Herdeiro and E. Radu, Static Einstein-Maxwell black holes with no spatial isometries in AdS space, Phys. Rev. Lett. 117 (2016) 221102 [arXiv:1606.02302] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J.L. Blázquez-Salcedo, J. Kunz, F. Navarro-Lérida and E. Radu, Static Einstein-Maxwell magnetic solitons and black holes in an odd dimensional AdS spacetime, Entropy 18 (2016) 438 [arXiv:1612.03747] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    P. Chrusciel and E. Delay, Non-singular space-times with a negative cosmological constant: II. Static solutions of the Einstein-Maxwell equations, Lett. Math. Phys. 107 (2017) 1391 [arXiv:1612.00281] [INSPIRE].
  53. [53]
    P.T. Chrusciel, E. Delay and P. Klinger, Nonsingular spacetimes with a negative cosmological constant: stationary solutions with matter fields, Phys. Rev. D 95 (2017) 104039 [arXiv:1701.03718] [INSPIRE].ADSGoogle Scholar
  54. [54]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Large-N phases, gravitational instantons and the nuts and bolts of AdS holography, Phys. Rev. D 59 (1999) 064010 [hep-th/9808177] [INSPIRE].ADSMathSciNetGoogle Scholar
  55. [55]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    R. Clarkson, L. Fatibene and R.B. Mann, Thermodynamics of (d + 1)-dimensional NUT charged AdS space-times, Nucl. Phys. B 652 (2003) 348 [hep-th/0210280] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  57. [57]
    D. Astefanesei, R.B. Mann and E. Radu, Nut charged space-times and closed timelike curves on the boundary, JHEP 01 (2005) 049 [hep-th/0407110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    D. Astefanesei, R.B. Mann and E. Radu, Breakdown of the entropy/area relationship for NUT-charged spacetimes, Phys. Lett. B 620 (2005) 1 [hep-th/0406050] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M.D. Yonge, AdS Taub-NUT space and the O(N ) vector model on a squashed 3-sphere, JHEP 07 (2007) 004 [hep-th/0611154] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  60. [60]
    J.P. Gauntlett and J.B. Gutowski, All supersymmetric solutions of minimal gauged supergravity in five-dimensions, Phys. Rev. D 68 (2003) 105009 [Erratum ibid. D 70 (2004) 089901] [hep-th/0304064] [INSPIRE].
  61. [61]
    K. Behrndt and D. Klemm, Black holes in Gödel type universes with a cosmological constant, Class. Quant. Grav. 21 (2004) 4107 [hep-th/0401239] [INSPIRE].ADSCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institut für PhysikUniversität OldenburgOldenburgGermany
  2. 2.Dept. de Fısica Teórica I and UPARCOS, Ciencias FísicasUniversidad Complutense de MadridMadridSpain
  3. 3.Departamento de Física da Universidade de Aveiro and CIDMAAveiroPortugal

Personalised recommendations