Advertisement

Journal of High Energy Physics

, 2018:59 | Cite as

CT14 intrinsic charm parton distribution functions from CTEQ-TEA global analysis

  • Tie-Jiun Hou
  • Sayipjamal Dulat
  • Jun Gao
  • Marco Guzzi
  • Joey Huston
  • Pavel Nadolsky
  • Carl Schmidt
  • Jan Winter
  • Keping Xie
  • C.-P. Yuan
Open Access
Regular Article - Theoretical Physics

Abstract

We investigate the possibility of a (sizable) nonperturbative contribution to the charm parton distribution function (PDF) in a nucleon, theoretical issues arising in its interpretation, and its potential impact on LHC scattering processes. The “fitted charm” PDF obtained in various QCD analyses contains a process-dependent component that is partly traced to power-suppressed radiative contributions in DIS and is generally different at the LHC. We discuss separation of the universal component of the nonperturbative charm from the rest of the radiative contributions and estimate its magnitude in the CT14 global QCD analysis at the next-to-next-to leading order in the QCD coupling strength, including the latest experimental data from HERA and the Large Hadron Collider. Models for the nonperturbative charm PDF are examined as a function of the charm quark mass and other parameters. The prospects for testing these models in the associated production of a Z boson and a charm jet at the LHC are studied under realistic assumptions, including effects of the final-state parton showering.

Keywords

QCD Phenomenology Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  2. [2]
    V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [INSPIRE].Google Scholar
  3. [3]
    V.N. Gribov and L.N. Lipatov, e + e pair annihilation and deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 675 [INSPIRE].
  4. [4]
    L.N. Lipatov, The parton model and perturbation theory, Sov. J. Nucl. Phys. 20 (1975) 94 [INSPIRE].Google Scholar
  5. [5]
    Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e + e Annihilation by Perturbation Theory in Quantum Chromodynamics., Sov. Phys. JETP 46 (1977) 641 [INSPIRE].
  6. [6]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
  8. [8]
    A. Vogt, S. Moch and J.A.M. Vermaseren, The three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].
  9. [9]
    J. Sanchez Guillen, J. Miramontes, M. Miramontes, G. Parente and O.A. Sampayo, Next-to-leading order analysis of the deep inelastic R = σ L T , Nucl. Phys. B 353 (1991) 337 [INSPIRE].
  10. [10]
    W.L. van Neerven and E.B. Zijlstra, Order α S2 contributions to the deep inelastic Wilson coefficient, Phys. Lett. B 272 (1991) 127 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    E.B. Zijlstra and W.L. van Neerven, Contribution of the second order gluonic Wilson coefficient to the deep inelastic structure function, Phys. Lett. B 273 (1991) 476 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    E.B. Zijlstra and W.L. van Neerven, Order α S2 QCD corrections to the deep inelastic proton structure functions F 2 and F L, Nucl. Phys. B 383 (1992) 525 [INSPIRE].
  13. [13]
    E. Laenen, S. Riemersma, J. Smith and W.L. van Neerven, Complete O(α s) corrections to heavy flavor structure functions in electroproduction, Nucl. Phys. B 392 (1993) 162 [INSPIRE].
  14. [14]
    S. Riemersma, J. Smith and W.L. van Neerven, Rates for inclusive deep inelastic electroproduction of charm quarks at HERA, Phys. Lett. B 347 (1995) 143 [hep-ph/9411431] [INSPIRE].
  15. [15]
    M. Buza, Y. Matiounine, J. Smith, R. Migneron and W.L. van Neerven, Heavy quark coefficient functions at asymptotic values Q 2m 2, Nucl. Phys. B 472 (1996) 611 [hep-ph/9601302] [INSPIRE].
  16. [16]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, Dilepton rapidity distribution in the Drell-Yan process at NNLO in QCD, Phys. Rev. Lett. 91 (2003) 182002 [hep-ph/0306192] [INSPIRE].
  17. [17]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].
  18. [18]
    E.L. Berger, J. Gao, C.S. Li, Z.L. Liu and H.X. Zhu, Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett. 116 (2016) 212002 [arXiv:1601.05430] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Currie, E.W.N. Glover and J. Pires, Next-to-Next-to Leading Order QCD Predictions for Single Jet Inclusive Production at the LHC, Phys. Rev. Lett. 118 (2017) 072002 [arXiv:1611.01460] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Currie, E.W.N. Glover, T. Gehrmann, A. Gehrmann-De Ridder, A. Huss and J. Pires, Single Jet Inclusive Production for the Individual Jet p T Scale Choice at the LHC, Acta Phys. Polon. B 48 (2017) 955 [arXiv:1704.00923] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Gao et al., CT10 next-to-next-to-leading order global analysis of QCD, Phys. Rev. D 89 (2014) 033009 [arXiv:1302.6246] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Buza, Y. Matiounine, J. Smith and W.L. van Neerven, Charm electroproduction viewed in the variable flavor number scheme versus fixed order perturbation theory, Eur. Phys. J. C 1 (1998) 301 [hep-ph/9612398] [INSPIRE].
  23. [23]
    S.J. Brodsky, P. Hoyer, C. Peterson and N. Sakai, The Intrinsic Charm of the Proton, Phys. Lett. B 93 (1980) 451 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S.J. Brodsky, C. Peterson and N. Sakai, Intrinsic Heavy Quark States, Phys. Rev. D 23 (1981) 2745 [INSPIRE].
  25. [25]
    J. Pumplin, Light-cone models for intrinsic charm and bottom, Phys. Rev. D 73 (2006) 114015 [hep-ph/0508184] [INSPIRE].
  26. [26]
    W.-C. Chang and J.-C. Peng, Flavor Asymmetry of the Nucleon Sea and the Five-Quark Components of the Nucleons, Phys. Rev. Lett. 106 (2011) 252002 [arXiv:1102.5631] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Blümlein, A Kinematic Condition on Intrinsic Charm, Phys. Lett. B 753 (2016) 619 [arXiv:1511.00229] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S.J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger and R. Vogt, A review of the intrinsic heavy quark content of the nucleon, Adv. High Energy Phys. 2015 (2015) 231547 [arXiv:1504.06287] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  29. [29]
    F.S. Navarra, M. Nielsen, C.A.A. Nunes and M. Teixeira, On the intrinsic charm component of the nucleon, Phys. Rev. D 54 (1996) 842 [hep-ph/9504388] [INSPIRE].
  30. [30]
    S. Paiva, M. Nielsen, F.S. Navarra, F.O. Duraes and L.L. Barz, Virtual meson cloud of the nucleon and intrinsic strangeness and charm, Mod. Phys. Lett. A 13 (1998) 2715 [hep-ph/9610310] [INSPIRE].
  31. [31]
    F.M. Steffens, W. Melnitchouk and A.W. Thomas, Charm in the nucleon, Eur. Phys. J. C 11 (1999) 673 [hep-ph/9903441] [INSPIRE].
  32. [32]
    T.J. Hobbs, J.T. Londergan and W. Melnitchouk, Phenomenology of nonperturbative charm in the nucleon, Phys. Rev. D 89 (2014) 074008 [arXiv:1311.1578] [INSPIRE].ADSGoogle Scholar
  33. [33]
    P. Jimenez-Delgado, T.J. Hobbs, J.T. Londergan and W. Melnitchouk, New limits on intrinsic charm in the nucleon from global analysis of parton distributions, Phys. Rev. Lett. 114 (2015) 082002 [arXiv:1408.1708] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    P. Jimenez-Delgado, T.J. Hobbs, J.T. Londergan and W. Melnitchouk, Reply to Comment on “New limits on intrinsic charm in the nucleon from global analysis of parton distributions”, Phys. Rev. Lett. 116 (2016) 019102 [arXiv:1504.06304] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S.J. Brodsky and S. Gardner, Comment on “New Limits on Intrinsic Charm in the Nucleon from Global Analysis of Parton Distributions”, Phys. Rev. Lett. 116 (2016) 019101 [arXiv:1504.00969] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Dulat et al., Intrinsic Charm Parton Distribution Functions from CTEQ-TEA Global Analysis, Phys. Rev. D 89 (2014) 073004 [arXiv:1309.0025] [INSPIRE].ADSGoogle Scholar
  37. [37]
    R.D. Ball et al., Intrinsic charm in a matched general-mass scheme, Phys. Lett. B 754 (2016) 49 [arXiv:1510.00009] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  38. [38]
    R.D. Ball, M. Bonvini and L. Rottoli, Charm in Deep-Inelastic Scattering, JHEP 11 (2015) 122 [arXiv:1510.02491] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    NNPDF collaboration, R.D. Ball et al., A Determination of the Charm Content of the Proton, Eur. Phys. J. C 76 (2016) 647 [arXiv:1605.06515] [INSPIRE].
  40. [40]
    NNPDF collaboration, R.D. Ball et al., Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
  41. [41]
    European Muon collaboration, J.J. Aubert et al., Production of charmed particles in 250-GeV μ + -iron interactions, Nucl. Phys. B 213 (1983) 31 [INSPIRE].
  42. [42]
    T.-J. Hou et al., CTEQ-TEA parton distribution functions and HERA Run I and II combined data, Phys. Rev. D 95 (2017) 034003 [arXiv:1609.07968] [INSPIRE].ADSGoogle Scholar
  43. [43]
    J. Pumplin, H.L. Lai and W.K. Tung, The Charm Parton Content of the Nucleon, Phys. Rev. D 75 (2007) 054029 [hep-ph/0701220] [INSPIRE].
  44. [44]
    F. Lyonnet et al., On the intrinsic bottom content of the nucleon and its impact on heavy new physics at the LHC, JHEP 07 (2015) 141 [arXiv:1504.05156] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M.A.G. Aivazis, F.I. Olness and W.-K. Tung, Leptoproduction of heavy quarks. 1. General formalism and kinematics of charged current and neutral current production processes, Phys. Rev. D 50 (1994) 3085 [hep-ph/9312318] [INSPIRE].
  46. [46]
    M.A.G. Aivazis, J.C. Collins, F.I. Olness and W.-K. Tung, Leptoproduction of heavy quarks. 2. A Unified QCD formulation of charged and neutral current processes from fixed target to collider energies, Phys. Rev. D 50 (1994) 3102 [hep-ph/9312319] [INSPIRE].
  47. [47]
    R.S. Thorne and R.G. Roberts, An Ordered analysis of heavy flavor production in deep inelastic scattering, Phys. Rev. D 57 (1998) 6871 [hep-ph/9709442] [INSPIRE].
  48. [48]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions, Eur. Phys. J. C 70 (2010) 51 [arXiv:1007.2624] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Forte, E. Laenen, P. Nason and J. Rojo, Heavy quarks in deep-inelastic scattering, Nucl. Phys. B 834 (2010) 116 [arXiv:1001.2312] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  50. [50]
    J. Gao, M. Guzzi and P.M. Nadolsky, Charm quark mass dependence in a global QCD analysis, Eur. Phys. J. C 73 (2013) 2541 [arXiv:1304.3494] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S. Alekhin, J. Blümlein, K. Daum, K. Lipka and S. Moch, Precise charm-quark mass from deep-inelastic scattering, Phys. Lett. B 720 (2013) 172 [arXiv:1212.2355] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Charm and beauty quark masses in the MMHT2014 global PDF analysis, Eur. Phys. J. C 76 (2016) 10 [arXiv:1510.02332] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    xFitter Developers’ Team collaboration, V. Bertone et al., A determination of m c(m c) from HERA data using a matched heavy-flavor scheme, JHEP 08 (2016) 050 [arXiv:1605.01946] [INSPIRE].
  54. [54]
    S. Alekhin, J. Blümlein, S. Moch and R. Placakyte, Parton distribution functions, α s and heavy-quark masses for LHC Run II, Phys. Rev. D 96 (2017) 014011 [arXiv:1701.05838] [INSPIRE].
  55. [55]
    A. Gizhko et al., Running of the Charm-Quark Mass from HERA Deep-Inelastic Scattering Data, Phys. Lett. B 775 (2017) 233 [arXiv:1705.08863] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].
  57. [57]
    I.I.Y. Bigi, M.A. Shifman, N.G. Uraltsev and A.I. Vainshtein, The Pole mass of the heavy quark. Perturbation theory and beyond, Phys. Rev. D 50 (1994) 2234 [hep-ph/9402360] [INSPIRE].
  58. [58]
    M. Beneke and V.M. Braun, Heavy quark effective theory beyond perturbation theory: Renormalons, the pole mass and the residual mass term, Nucl. Phys. B 426 (1994) 301 [hep-ph/9402364] [INSPIRE].
  59. [59]
    M. Beneke, Renormalons, Phys. Rept. 317 (1999) 1 [hep-ph/9807443] [INSPIRE].
  60. [60]
    M. Guzzi, P.M. Nadolsky, H.-L. Lai and C.P. Yuan, General-Mass Treatment for Deep Inelastic Scattering at Two-Loop Accuracy, Phys. Rev. D 86 (2012) 053005 [arXiv:1108.5112] [INSPIRE].ADSGoogle Scholar
  61. [61]
    B. Wang, Application of QCD factorization in multiscale hadronic scattering, Ph.D. Thesis, Southern Methodist University (2015).Google Scholar
  62. [62]
    W.K. Tung, H.L. Lai, A. Belyaev, J. Pumplin, D. Stump and C.P. Yuan, Heavy Quark Mass Effects in Deep Inelastic Scattering and Global QCD Analysis, JHEP 02 (2007) 053 [hep-ph/0611254] [INSPIRE].
  63. [63]
    J.C. Collins, Hard scattering factorization with heavy quarks: A general treatment, Phys. Rev. D 58 (1998) 094002 [hep-ph/9806259] [INSPIRE].
  64. [64]
    M. Krämer, F.I. Olness and D.E. Soper, Treatment of heavy quarks in deeply inelastic scattering, Phys. Rev. D 62 (2000) 096007 [hep-ph/0003035] [INSPIRE].
  65. [65]
    W.-K. Tung, S. Kretzer and C. Schmidt, Open heavy flavor production in QCD: Conceptual framework and implementation issues, J. Phys. G 28 (2002) 983 [hep-ph/0110247] [INSPIRE].
  66. [66]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O(α S3) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].
  67. [67]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  68. [68]
    J. Collins, Foundations of perturbative QCD, Cambridge University Press (2013)Google Scholar
  69. [69]
    R.L. Jaffe, Parton Distribution Functions for Twist Four, Nucl. Phys. B 229 (1983) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    R.L. Jaffe and M. Soldate, Twist Four in Electroproduction: Canonical Operators and Coefficient Functions, Phys. Rev. D 26 (1982) 49 [INSPIRE].ADSGoogle Scholar
  71. [71]
    V.M. Braun, A.N. Manashov and J. Rohrwild, Renormalization of Twist-Four Operators in QCD, Nucl. Phys. B 826 (2010) 235 [arXiv:0908.1684] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  72. [72]
    Y. Ji and A.V. Belitsky, Renormalization of twist-four operators in light-cone gauge, Nucl. Phys. B 894 (2015) 161 [arXiv:1405.2828] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  73. [73]
    D.J. Gross and S.B. Treiman, Light cone structure of current commutators in the gluon quark model, Phys. Rev. D 4 (1971) 1059 [INSPIRE].ADSGoogle Scholar
  74. [74]
    S.A. Anikin and O.I. Zavyalov, Short Distance and Light Cone Expansions for Products of Currents, Annals Phys. 116 (1978) 135 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    R.K. Ellis, W. Furmanski and R. Petronzio, Unraveling Higher Twists, Nucl. Phys. B 212 (1983) 29 [INSPIRE].ADSGoogle Scholar
  76. [76]
    R.K. Ellis, W. Furmanski and R. Petronzio, Power Corrections to the Parton Model in QCD, Nucl. Phys. B 207 (1982) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    I.I. Balitsky, V.M. Braun and A.V. Kolesnichenko, Power corrections 1/Q 2 to parton sum rules for deep inelastic scattering from polarized targets, Phys. Lett. B 242 (1990) 245 [Erratum ibid. B 318 (1993) 648] [hep-ph/9310316] [INSPIRE].
  78. [78]
    J.-w. Qiu and G.F. Sterman, Power corrections in hadronic scattering. 1. Leading 1/Q 2 corrections to the Drell-Yan cross-section, Nucl. Phys. B 353 (1991) 105 [INSPIRE].
  79. [79]
    J.-w. Qiu and G.F. Sterman, Power corrections to hadronic scattering. 2. Factorization, Nucl. Phys. B 353 (1991) 137 [INSPIRE].
  80. [80]
    R.L. Jaffe and X.-D. Ji, Chiral odd parton distributions and Drell-Yan processes, Nucl. Phys. B 375 (1992) 527 [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    R.L. Jaffe, Spin, twist and hadron structure in deep inelastic processes, hep-ph/9602236 [INSPIRE].
  82. [82]
    D. Müller, D. Robaschik, B. Geyer, F.M. Dittes and J. Hořejši, Wave functions, evolution equations and evolution kernels from light ray operators of QCD, Fortsch. Phys. 42 (1994) 101 [hep-ph/9812448] [INSPIRE].
  83. [83]
    J. Blümlein, B. Geyer and D. Robaschik, The Virtual Compton amplitude in the generalized Bjorken region: twist-2 contributions, Nucl. Phys. B 560 (1999) 283 [hep-ph/9903520] [INSPIRE].
  84. [84]
    B. Geyer, M. Lazar and D. Robaschik, Decomposition of nonlocal light cone operators into harmonic operators of definite twist, Nucl. Phys. B 559 (1999) 339 [hep-th/9901090] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  85. [85]
    B. Geyer and M. Lazar, Parton distribution functions from nonlocal light cone operators with definite twist, Phys. Rev. D 63 (2001) 094003 [hep-ph/0009309] [INSPIRE].
  86. [86]
    G. Curci, W. Furmanski and R. Petronzio, Evolution of Parton Densities Beyond Leading Order: The Nonsinglet Case, Nucl. Phys. B 175 (1980) 27 [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    K.-F. Liu, W.-C. Chang, H.-Y. Cheng and J.-C. Peng, Connected-Sea Partons, Phys. Rev. Lett. 109 (2012) 252002 [arXiv:1206.4339] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    K.-F. Liu, private communication.Google Scholar
  89. [89]
    New Muon collaboration, M. Arneodo et al., Measurement of the proton and deuteron structure functions, F 2p and F 2d and of the ratio σ L T , Nucl. Phys. B 483 (1997) 3 [hep-ph/9610231] [INSPIRE].
  90. [90]
    G.P. Salam and J. Rojo, A Higher Order Perturbative Parton Evolution Toolkit (HOPPET), Comput. Phys. Commun. 180 (2009) 120 [arXiv:0804.3755] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    T. Carli et al., A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project, Eur. Phys. J. C 66 (2010) 503 [arXiv:0911.2985] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    fastNLO collaboration, M. Wobisch et al., Theory-Data Comparisons for Jet Measurements in Hadron-Induced Processes, arXiv:1109.1310 [INSPIRE].
  93. [93]
    H1 collaboration, F.D. Aaron et al., Measurement of the Inclusive e ± p Scattering Cross section at High Inelasticity y and of the Structure Function F L, Eur. Phys. J. C 71 (2011) 1579 [arXiv:1012.4355] [INSPIRE].
  94. [94]
    J.M. Campbell, J.W. Huston and W.J. Stirling, Hard Interactions of Quarks and Gluons: A Primer for LHC Physics, Rept. Prog. Phys. 70 (2007) 89 [hep-ph/0611148] [INSPIRE].
  95. [95]
    H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].ADSGoogle Scholar
  96. [96]
    BCDMS collaboration, A.C. Benvenuti et al., A High Statistics Measurement of the Deuteron Structure Functions F 2(x, Q 2) and R From Deep Inelastic Muon Scattering at High Q 2, Phys. Lett. B 237 (1990) 592 [INSPIRE].
  97. [97]
    BCDMS collaboration, A.C. Benvenuti et al., A High Statistics Measurement of the Proton Structure Functions F 2(x, Q 2) and R from Deep Inelastic Muon Scattering at High Q 2, Phys. Lett. B 223 (1989) 485 [INSPIRE].
  98. [98]
    ATLAS collaboration, Measurement of the inclusive W ± and Z/gamma cross sections in the electron and muon decay channels in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 072004 [arXiv:1109.5141] [INSPIRE].
  99. [99]
    NuSea collaboration, J.C. Webb et al., Absolute Drell-Yan dimuon cross-sections in 800 GeV/c pp and pd collisions, hep-ex/0302019 [INSPIRE].
  100. [100]
    CCFR/NuTeV collaboration, U.-K. Yang et al., Measurements of F 2 and \( x{F}_3^{\nu }-x{F}_3^{\overline{\nu}} \) from CCFR ν μFe and \( {\overline{\nu}}_{\mu }-Fe \) data in a physics model independent way, Phys. Rev. Lett. 86 (2001) 2742 [hep-ex/0009041] [INSPIRE].
  101. [101]
    ZEUS, H1 collaborations, H. Abramowicz et al., Combination and QCD Analysis of Charm Production Cross section Measurements in Deep-Inelastic ep Scattering at HERA, Eur. Phys. J. C 73 (2013) 2311 [arXiv:1211.1182] [INSPIRE].
  102. [102]
    J.P. Berge et al., A Measurement of Differential Cross-Sections and Nucleon Structure Functions in Charged Current Neutrino Interactions on Iron, Z. Phys. C 49 (1991) 187 [INSPIRE].Google Scholar
  103. [103]
    H.L. Lai et al., Global QCD analysis and the CTEQ parton distributions, Phys. Rev. D 51 (1995) 4763 [hep-ph/9410404] [INSPIRE].
  104. [104]
    J.G. Morfin and W.-K. Tung, Parton distributions from a global QCD analysis of deep inelastic scattering and lepton pair production, Z. Phys. C 52 (1991) 13 [INSPIRE].ADSGoogle Scholar
  105. [105]
    European Muon collaboration, J.J. Aubert et al., QCD Analysis of the Structure Function F2 in Muon Nucleon Scattering, Phys. Lett. B 114 (1982) 291 [INSPIRE].
  106. [106]
    A.R. Clark et al., Measurement of the Charm Structure Function and Its Role in Scale Noninvariance, Phys. Rev. Lett. 45 (1980) 1465 [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    E. Hoffmann and R. Moore, Subleading Contributions to the Intrinsic Charm of the Nucleon, Z. Phys. C 20 (1983) 71 [INSPIRE].ADSGoogle Scholar
  108. [108]
    R. Vogt and S.J. Brodsky, Intrinsic charm contribution to double quarkonium hadroproduction, Phys. Lett. B 349 (1995) 569 [hep-ph/9503206] [INSPIRE].
  109. [109]
    R. Vogt and S.J. Brodsky, Charmed hadron asymmetries in the intrinsic charm coalescence model, Nucl. Phys. B 478 (1996) 311 [hep-ph/9512300] [INSPIRE].
  110. [110]
    R. Vogt and S.J. Brodsky, QCD and intrinsic heavy quark predictions for leading charm and beauty hadroproduction, Nucl. Phys. B 438 (1995) 261 [hep-ph/9405236] [INSPIRE].
  111. [111]
    B.W. Harris, J. Smith and R. Vogt, Reanalysis of the EMC charm production data with extrinsic and intrinsic charm at NLO, Nucl. Phys. B 461 (1996) 181 [hep-ph/9508403] [INSPIRE].
  112. [112]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  113. [113]
    T.-J. Hou et al., Reconstruction of Monte Carlo replicas from Hessian parton distributions, JHEP 03 (2017) 099 [arXiv:1607.06066] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  114. [114]
    C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Total cross-section for Higgs boson hadroproduction with anomalous Standard Model interactions, JHEP 12 (2011) 058 [arXiv:1107.0683] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  115. [115]
    ATLAS collaboration, Measurement of W ± and Z-boson production cross sections in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 759 (2016) 601 [arXiv:1603.09222] [INSPIRE].
  116. [116]
    ATLAS collaboration, Combined measurements of the Higgs boson production and decay rates in HZZ → 4ℓ and Hγγ final states using pp collision data at \( \sqrt{s} \) = 13 TeV in the ATLAS experiment, ATLAS-CONF-2016-081 (2016).
  117. [117]
    ATLAS collaboration, Measurement of the Z/γ boson transverse momentum distribution in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 09 (2014) 145 [arXiv:1406.3660] [INSPIRE].
  118. [118]
    ATLAS collaboration, Measurement of the transverse momentum and ϕ η distributions of Drell-Yan lepton pairs in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 291 [arXiv:1512.02192] [INSPIRE].
  119. [119]
    CMS collaboration, Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV, Phys. Lett. B 749 (2015) 187 [arXiv:1504.03511] [INSPIRE].
  120. [120]
    B.A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, Open charm hadroproduction and the charm content of the proton, Phys. Rev. D 79 (2009) 094009 [arXiv:0901.4130] [INSPIRE].ADSGoogle Scholar
  121. [121]
    B.A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, Inclusive Charmed-Meson Production at the CERN LHC, Eur. Phys. J. C 72 (2012) 2082 [arXiv:1202.0439] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    T.P. Stavreva and J.F. Owens, Direct Photon Production in Association With A Heavy Quark At Hadron Colliders, Phys. Rev. D 79 (2009) 054017 [arXiv:0901.3791] [INSPIRE].ADSGoogle Scholar
  123. [123]
    T. Stavreva et al., Probing gluon and heavy-quark nuclear PDFs with γ + Q production in pA collisions, JHEP 01 (2011) 152 [arXiv:1012.1178] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  124. [124]
    V.A. Bednyakov, M.A. Demichev, G.I. Lykasov, T. Stavreva and M. Stockton, Searching for intrinsic charm in the proton at the LHC, Phys. Lett. B 728 (2014) 602 [arXiv:1305.3548] [INSPIRE].ADSCrossRefGoogle Scholar
  125. [125]
    A.V. Lipatov, G.I. Lykasov, Yu.Yu. Stepanenko and V.A. Bednyakov, Probing proton intrinsic charm in photon or Z boson production accompanied by heavy jets at the LHC, Phys. Rev. D 94 (2016) 053011 [arXiv:1606.04882] [INSPIRE].ADSGoogle Scholar
  126. [126]
    G. Bailas and V.P. Goncalves, Phenomenological implications of the intrinsic charm in the Z boson production at the LHC, Eur. Phys. J. C 76 (2016) 105 [arXiv:1512.06007] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    S. Rostami, A. Khorramian, A. Aleedaneshvar and M. Goharipour, The impact of the intrinsic charm quark content of a proton on the differential γ + c cross section, J. Phys. G 43 (2016) 055001 [arXiv:1510.08421] [INSPIRE].ADSCrossRefGoogle Scholar
  128. [128]
    V.A. Bednyakov et al., Constraints on the intrinsic charm content of the proton from recent ATLAS data, arXiv:1712.09096 [INSPIRE].
  129. [129]
    T. Boettcher, P. Ilten and M. Williams, Direct probe of the intrinsic charm content of the proton, Phys. Rev. D 93 (2016) 074008 [arXiv:1512.06666] [INSPIRE].ADSGoogle Scholar
  130. [130]
    CMS collaboration, Measurement of associated Z+ charm production in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-SMP-15-009 (2016).
  131. [131]
    J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Higgs-Boson production in association with a single bottom quark, Phys. Rev. D 67 (2003) 095002 [hep-ph/0204093] [INSPIRE].
  132. [132]
    J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Associated production of a Z Boson and a single heavy quark jet, Phys. Rev. D 69 (2004) 074021 [hep-ph/0312024] [INSPIRE].
  133. [133]
    J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].CrossRefGoogle Scholar
  134. [134]
    S. Höche, S. Schumann and F. Siegert, Hard photon production and matrix-element parton-shower merging, Phys. Rev. D 81 (2010) 034026 [arXiv:0912.3501] [INSPIRE].ADSGoogle Scholar
  135. [135]
    S. Höche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].CrossRefGoogle Scholar
  136. [136]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  137. [137]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  138. [138]
    D. Boer et al., Gluons and the quark sea at high energies: Distributions, polarization, tomography, arXiv:1108.1713 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Tie-Jiun Hou
    • 1
  • Sayipjamal Dulat
    • 2
    • 3
    • 4
  • Jun Gao
    • 5
  • Marco Guzzi
    • 6
    • 7
  • Joey Huston
    • 4
  • Pavel Nadolsky
    • 1
  • Carl Schmidt
    • 4
  • Jan Winter
    • 4
  • Keping Xie
    • 1
  • C.-P. Yuan
    • 4
  1. 1.Department of PhysicsSouthern Methodist UniversityDallasU.S.A.
  2. 2.School of Physics Science and TechnologyXinjiang UniversityUrumqiChina
  3. 3.Center for Theoretical PhysicsXinjiang UniversityUrumqiChina
  4. 4.Department of Physics and AstronomyMichigan State UniversityEast LansingU.S.A.
  5. 5.School of Physics and Astronomy, INPAC, Shanghai Key Laboratory for Particle Physics and CosmologyShanghai Jiao-Tong UniversityShanghaiChina
  6. 6.School of Physics and AstronomyUniversity of ManchesterManchesterUnited Kingdom
  7. 7.Department of PhysicsKennesaw State UniversityKennesawU.S.A.

Personalised recommendations