V.S. Vanyashin and M.V. Terent’ev, The vacuum polarization of a charged vector field, Sov. Phys. JETP
21 (1965) 375.
ADS
MathSciNet
Google Scholar
I.B. Khriplovich, Green’s functions in theories with non-abelian gauge group., Sov. J. Nucl. Phys.
10 (1969) 235 [INSPIRE].
Google Scholar
G. ’t Hooft, report at the Colloquium on Renormalization of Yang-Mills Fields and Applications to Particle Physics, Marseille, France, June 1972, unpublished.
D.J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys. Rev. Lett.
30 (1973) 1343 [INSPIRE].
ADS
Article
Google Scholar
H.D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett.
30 (1973) 1346 [INSPIRE].
ADS
Article
Google Scholar
W.E. Caswell, Asymptotic Behavior of Nonabelian Gauge Theories to Two Loop Order, Phys. Rev. Lett.
33 (1974) 244 [INSPIRE].
ADS
Article
Google Scholar
D.R.T. Jones, Two Loop Diagrams in Yang-Mills Theory, Nucl. Phys.
B 75 (1974) 531 [INSPIRE].
ADS
Article
Google Scholar
E. Egorian and O.V. Tarasov, Two Loop Renormalization of the QCD in an Arbitrary Gauge, Teor. Mat. Fiz.
41 (1979) 26 [INSPIRE].
Google Scholar
O.V. Tarasov, A.A. Vladimirov and A.Yu. Zharkov, The Gell-Mann-Low Function of QCD in the Three Loop Approximation, Phys. Lett.
B 93 (1980) 429 [INSPIRE].
ADS
Article
Google Scholar
S.A. Larin and J.A.M. Vermaseren, The Three loop QCD β-function and anomalous dimensions, Phys. Lett.
B 303 (1993) 334 [hep-ph/9302208] [INSPIRE].
T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The Four loop β-function in quantum chromodynamics, Phys. Lett.
B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].
M. Czakon, The Four-loop QCD β-function and anomalous dimensions, Nucl. Phys.
B 710 (2005) 485 [hep-ph/0411261] [INSPIRE].
G. ’t Hooft, Dimensional regularization and the renormalization group, Nucl. Phys.
B 61 (1973) 455 [INSPIRE].
W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep Inelastic Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories, Phys. Rev.
D 18 (1978) 3998 [INSPIRE].
ADS
Google Scholar
C.G. Bollini and J.J. Giambiagi, Dimensional Renormalization: The Number of Dimensions as a Regularizing Parameter, Nuovo Cim.
B 12 (1972) 20 [INSPIRE].
Google Scholar
G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys.
B 44 (1972) 189 [INSPIRE].
J.A.M. Vermaseren, A. Vogt and S. Moch, The Third-order QCD corrections to deep-inelastic scattering by photon exchange, Nucl. Phys.
B 724 (2005) 3 [hep-ph/0504242] [INSPIRE].
S. Moch, J.A.M. Vermaseren and A. Vogt, Third-order QCD corrections to the charged-current structure function F
3, Nucl. Phys.
B 813 (2009) 220 [arXiv:0812.4168] [INSPIRE].
ADS
Article
MATH
Google Scholar
C. Anzai et al., Exact N
3
LO results for qq′ → H → X, JHEP
07 (2015) 140 [arXiv:1506.02674] [INSPIRE].
ADS
Article
Google Scholar
C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP
05 (2016) 058 [arXiv:1602.00695] [INSPIRE].
ADS
Article
Google Scholar
B. Ruijl, T. Ueda, J.A.M. Vermaseren, J. Davies and A. Vogt, First Forcer results on deep-inelastic scattering and related quantities, PoS(LL2016)071 [arXiv:1605.08408] [INSPIRE].
P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-Loop Running of the QCD coupling constant, arXiv:1606.08659 [INSPIRE].
P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn and J. Rittinger, Vector Correlator in Massless QCD at Order O(α
4
s
) and the QED β-function at Five Loop, JHEP
07 (2012) 017 [arXiv:1206.1284] [INSPIRE].
ADS
Article
Google Scholar
J.A. Gracey, The QCD β-function at O(1/N
f
), Phys. Lett.
B 373 (1996) 178 [hep-ph/9602214] [INSPIRE].
T. Luthe, A. Maier, P. Marquard and Y. Schröder, Towards the five-loop β-function for a general gauge group, JHEP
07 (2016) 127 [arXiv:1606.08662] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L.F. Abbott, The Background Field Method Beyond One Loop, Nucl. Phys.
B 185 (1981) 189 [INSPIRE].
ADS
Article
Google Scholar
L.F. Abbott, M.T. Grisaru and R.K. Schaefer, The Background Field Method and the S Matrix, Nucl. Phys.
B 229 (1983) 372 [INSPIRE].
ADS
Article
Google Scholar
T. Ueda, B. Ruijl and J.A.M. Vermaseren, Calculating four-loop massless propagators with Forcer, J. Phys. Conf. Ser.
762 (2016) 012060 [arXiv:1604.08767] [INSPIRE].
Article
Google Scholar
T. Ueda, B. Ruijl and J.A.M. Vermaseren, Forcer: a FORM program for 4-loop massless propagators, PoS(LL2016)070 [arXiv:1607.07318] [INSPIRE].
B. Ruijl, T. Ueda and J.A.M. Vermaseren, Forcer, a FORM program for the parametric reduction of four-loop massless propagator diagrams, to appear.
F. Herzog and B. Ruijl, On the Subtraction of Singularities in Tensor Feynman Integrals with External Masses, to appear.
K.G. Chetyrkin and F.V. Tkachov, Infrared r operation and ultraviolet counterterms in the MS scheme, Phys. Lett.
B 114 (1982) 340 [INSPIRE].
ADS
Article
Google Scholar
K.G. Chetyrkin and V.A. Smirnov, R
*
operation corrected, Phys. Lett.
B 144 (1984) 419 [INSPIRE].
ADS
Article
Google Scholar
V.A. Smirnov and K.G. Chetyrkin, R
*
Operation in the Minimal Subtraction Scheme, Theor. Math. Phys.
63 (1985) 462 [INSPIRE].
MathSciNet
Article
Google Scholar
K.G. Chetyrkin, Combinatorics of R-, R
−1
- and R
*
-operations and asymptotic expansions of Feynman integrals in the limit of large momenta and masses, MPI-PH-PTH-13-91 [arXiv:1701.08627] [INSPIRE].
W.H. Furry, A Symmetry Theorem in the Positron Theory, Phys. Rev.
51 (1937) 125 [INSPIRE].
ADS
Article
MATH
Google Scholar
H. Kleinert and V. Schulte-Frohlinde, Critical Properties of ϕ
4
-Theories, World Scientific (2001) [ISBN:978-981-02-4658-7].
W.E. Caswell and A.D. Kennedy, A simple approach to renormalization theory, Phys. Rev.
D 25 (1982) 392 [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys.
105 (1993) 279 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
M. Tentyukov and J.A.M. Vermaseren, The Multithreaded version of FORM, Comput. Phys. Commun.
181 (2010) 1419 [hep-ph/0702279] [INSPIRE].
J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun.
184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
T. van Ritbergen, A.N. Schellekens and J.A.M. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys.
A 14 (1999) 41 [hep-ph/9802376] [INSPIRE].
F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, FORM, Diagrams and Topologies, PoS(LL2016)073 [arXiv:1608.01834] [INSPIRE].
J.A.M. Vermaseren, Automated calculations, seminar talk at Nikhef, September 2015.
P.A. Baikov and K.G. Chetyrkin, Four Loop Massless Propagators: An Algebraic Evaluation of All Master Integrals, Nucl. Phys.
B 837 (2010) 186 [arXiv:1004.1153] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A.L. Kataev and S.A. Larin, Analytical five-loop expressions for the renormalization group QED β-function in different renormalization schemes, Pisma Zh. Eksp. Teor. Fiz.
96 (2012) 64 [arXiv:1205.2810] [INSPIRE].
Google Scholar
D.V. Batkovich and M. Kompaniets, Toolbox for multiloop Feynman diagrams calculations using R
*
operation, J. Phys. Conf. Ser.
608 (2015) 012068 [arXiv:1411.2618] [INSPIRE].
Article
Google Scholar
D.V. Batkovich, K.G. Chetyrkin and M.V. Kompaniets, Six loop analytical calculation of the field anomalous dimension and the critical exponent η in O(n)-symmetric φ
4
model, Nucl. Phys.
B 906 (2016) 147 [arXiv:1601.01960] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
T. Luthe, A. Maier, P. Marquard and Y. Schröder, Five-loop quark mass and field anomalous dimensions for a general gauge group, JHEP
01 (2017) 081 [arXiv:1612.05512] [INSPIRE].
Article
Google Scholar