Skip to main content

The five-loop beta function of Yang-Mills theory with fermions

A preprint version of the article is available at arXiv.

Abstract

We have computed the five-loop corrections to the scale dependence of the renormalized coupling constant for Quantum Chromodynamics (QCD), its generalization to non-Abelian gauge theories with a simple compact Lie group, and for Quantum Electrodynamics (QED). Our analytical result, obtained using the background field method, infrared rearrangement via a new diagram-by-diagram implementation of the R* operation and the Forcer program for massless four-loop propagators, confirms the QCD and QED results obtained by only one group before. The numerical size of the five-loop corrections is briefly discussed in the standard \( \overline{\mathrm{MS}} \) scheme for QCD with n f flavours and for pure SU(N) Yang-Mills theory. Their effect in QCD is much smaller than the four-loop contributions, even at rather low scales.

References

  1. V.S. Vanyashin and M.V. Terent’ev, The vacuum polarization of a charged vector field, Sov. Phys. JETP 21 (1965) 375.

    ADS  MathSciNet  Google Scholar 

  2. I.B. Khriplovich, Green’s functions in theories with non-abelian gauge group., Sov. J. Nucl. Phys. 10 (1969) 235 [INSPIRE].

    Google Scholar 

  3. G. ’t Hooft, report at the Colloquium on Renormalization of Yang-Mills Fields and Applications to Particle Physics, Marseille, France, June 1972, unpublished.

  4. D.J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys. Rev. Lett. 30 (1973) 1343 [INSPIRE].

    ADS  Article  Google Scholar 

  5. H.D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].

    ADS  Article  Google Scholar 

  6. W.E. Caswell, Asymptotic Behavior of Nonabelian Gauge Theories to Two Loop Order, Phys. Rev. Lett. 33 (1974) 244 [INSPIRE].

    ADS  Article  Google Scholar 

  7. D.R.T. Jones, Two Loop Diagrams in Yang-Mills Theory, Nucl. Phys. B 75 (1974) 531 [INSPIRE].

    ADS  Article  Google Scholar 

  8. E. Egorian and O.V. Tarasov, Two Loop Renormalization of the QCD in an Arbitrary Gauge, Teor. Mat. Fiz. 41 (1979) 26 [INSPIRE].

    Google Scholar 

  9. O.V. Tarasov, A.A. Vladimirov and A.Yu. Zharkov, The Gell-Mann-Low Function of QCD in the Three Loop Approximation, Phys. Lett. B 93 (1980) 429 [INSPIRE].

    ADS  Article  Google Scholar 

  10. S.A. Larin and J.A.M. Vermaseren, The Three loop QCD β-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [INSPIRE].

  11. T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The Four loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].

  12. M. Czakon, The Four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [INSPIRE].

  13. G. ’t Hooft, Dimensional regularization and the renormalization group, Nucl. Phys. B 61 (1973) 455 [INSPIRE].

  14. W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep Inelastic Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories, Phys. Rev. D 18 (1978) 3998 [INSPIRE].

    ADS  Google Scholar 

  15. C.G. Bollini and J.J. Giambiagi, Dimensional Renormalization: The Number of Dimensions as a Regularizing Parameter, Nuovo Cim. B 12 (1972) 20 [INSPIRE].

    Google Scholar 

  16. G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].

  17. J.A.M. Vermaseren, A. Vogt and S. Moch, The Third-order QCD corrections to deep-inelastic scattering by photon exchange, Nucl. Phys. B 724 (2005) 3 [hep-ph/0504242] [INSPIRE].

  18. S. Moch, J.A.M. Vermaseren and A. Vogt, Third-order QCD corrections to the charged-current structure function F 3, Nucl. Phys. B 813 (2009) 220 [arXiv:0812.4168] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  19. C. Anzai et al., Exact N 3 LO results for qq′ → HX, JHEP 07 (2015) 140 [arXiv:1506.02674] [INSPIRE].

    ADS  Article  Google Scholar 

  20. C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP 05 (2016) 058 [arXiv:1602.00695] [INSPIRE].

    ADS  Article  Google Scholar 

  21. B. Ruijl, T. Ueda, J.A.M. Vermaseren, J. Davies and A. Vogt, First Forcer results on deep-inelastic scattering and related quantities, PoS(LL2016)071 [arXiv:1605.08408] [INSPIRE].

  22. P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-Loop Running of the QCD coupling constant, arXiv:1606.08659 [INSPIRE].

  23. P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn and J. Rittinger, Vector Correlator in Massless QCD at Order O(α 4 s ) and the QED β-function at Five Loop, JHEP 07 (2012) 017 [arXiv:1206.1284] [INSPIRE].

    ADS  Article  Google Scholar 

  24. J.A. Gracey, The QCD β-function at O(1/N f ), Phys. Lett. B 373 (1996) 178 [hep-ph/9602214] [INSPIRE].

  25. T. Luthe, A. Maier, P. Marquard and Y. Schröder, Towards the five-loop β-function for a general gauge group, JHEP 07 (2016) 127 [arXiv:1606.08662] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. L.F. Abbott, The Background Field Method Beyond One Loop, Nucl. Phys. B 185 (1981) 189 [INSPIRE].

    ADS  Article  Google Scholar 

  27. L.F. Abbott, M.T. Grisaru and R.K. Schaefer, The Background Field Method and the S Matrix, Nucl. Phys. B 229 (1983) 372 [INSPIRE].

    ADS  Article  Google Scholar 

  28. T. Ueda, B. Ruijl and J.A.M. Vermaseren, Calculating four-loop massless propagators with Forcer, J. Phys. Conf. Ser. 762 (2016) 012060 [arXiv:1604.08767] [INSPIRE].

    Article  Google Scholar 

  29. T. Ueda, B. Ruijl and J.A.M. Vermaseren, Forcer: a FORM program for 4-loop massless propagators, PoS(LL2016)070 [arXiv:1607.07318] [INSPIRE].

  30. B. Ruijl, T. Ueda and J.A.M. Vermaseren, Forcer, a FORM program for the parametric reduction of four-loop massless propagator diagrams, to appear.

  31. F. Herzog and B. Ruijl, On the Subtraction of Singularities in Tensor Feynman Integrals with External Masses, to appear.

  32. K.G. Chetyrkin and F.V. Tkachov, Infrared r operation and ultraviolet counterterms in the MS scheme, Phys. Lett. B 114 (1982) 340 [INSPIRE].

    ADS  Article  Google Scholar 

  33. K.G. Chetyrkin and V.A. Smirnov, R * operation corrected, Phys. Lett. B 144 (1984) 419 [INSPIRE].

    ADS  Article  Google Scholar 

  34. V.A. Smirnov and K.G. Chetyrkin, R * Operation in the Minimal Subtraction Scheme, Theor. Math. Phys. 63 (1985) 462 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  35. K.G. Chetyrkin, Combinatorics of R-, R −1 - and R * -operations and asymptotic expansions of Feynman integrals in the limit of large momenta and masses, MPI-PH-PTH-13-91 [arXiv:1701.08627] [INSPIRE].

  36. W.H. Furry, A Symmetry Theorem in the Positron Theory, Phys. Rev. 51 (1937) 125 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  37. H. Kleinert and V. Schulte-Frohlinde, Critical Properties of ϕ 4 -Theories, World Scientific (2001) [ISBN:978-981-02-4658-7].

  38. W.E. Caswell and A.D. Kennedy, A simple approach to renormalization theory, Phys. Rev. D 25 (1982) 392 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  39. P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

  41. M. Tentyukov and J.A.M. Vermaseren, The Multithreaded version of FORM, Comput. Phys. Commun. 181 (2010) 1419 [hep-ph/0702279] [INSPIRE].

  42. J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].

  43. T. van Ritbergen, A.N. Schellekens and J.A.M. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 [hep-ph/9802376] [INSPIRE].

  44. F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, FORM, Diagrams and Topologies, PoS(LL2016)073 [arXiv:1608.01834] [INSPIRE].

  45. J.A.M. Vermaseren, Automated calculations, seminar talk at Nikhef, September 2015.

  46. P.A. Baikov and K.G. Chetyrkin, Four Loop Massless Propagators: An Algebraic Evaluation of All Master Integrals, Nucl. Phys. B 837 (2010) 186 [arXiv:1004.1153] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  47. A.L. Kataev and S.A. Larin, Analytical five-loop expressions for the renormalization group QED β-function in different renormalization schemes, Pisma Zh. Eksp. Teor. Fiz. 96 (2012) 64 [arXiv:1205.2810] [INSPIRE].

    Google Scholar 

  48. D.V. Batkovich and M. Kompaniets, Toolbox for multiloop Feynman diagrams calculations using R * operation, J. Phys. Conf. Ser. 608 (2015) 012068 [arXiv:1411.2618] [INSPIRE].

    Article  Google Scholar 

  49. D.V. Batkovich, K.G. Chetyrkin and M.V. Kompaniets, Six loop analytical calculation of the field anomalous dimension and the critical exponent η in O(n)-symmetric φ 4 model, Nucl. Phys. B 906 (2016) 147 [arXiv:1601.01960] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  50. T. Luthe, A. Maier, P. Marquard and Y. Schröder, Five-loop quark mass and field anomalous dimensions for a general gauge group, JHEP 01 (2017) 081 [arXiv:1612.05512] [INSPIRE].

    Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Vogt.

Additional information

ArXiv ePrint: 1701.01404

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herzog, F., Ruijl, B., Ueda, T. et al. The five-loop beta function of Yang-Mills theory with fermions. J. High Energ. Phys. 2017, 90 (2017). https://doi.org/10.1007/JHEP02(2017)090

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2017)090

Keywords

  • Perturbative QCD
  • Renormalization Group