Skip to main content

Probing light higgsinos in natural SUSY from monojet signals at the LHC


We investigate a strategy to search for light, nearly degenerate higgsinos within the natural MSSM at the LHC. We demonstrate that the higgsino mass range μ in 100−160 GeV, which is preferred by the naturalness, can be probed at 3σ significance through the monojet search at 14 TeV HL-LHC with 3000 fb−1 luminosity. The proposed method can also probe certain region in the parameter space for the lightest neutralino with a high higgsino purity, that cannot be reached by planned direct detection experiments at XENON-1 T(2017).


  1. [1]

    ATLAS collaboration, Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s} \) = 7 TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    M.S. Carena and H.E. Haber, Higgs boson theory and phenomenology, Prog. Part. Nucl. Phys. 50 (2003) 63 [hep-ph/0208209] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    ATLAS collaboration, Search for new phenomena using final states with large jet multiplicities and missing transverse momentum with ATLAS in 20 fb −1 of \( \sqrt{s} \) = 8 TeV proton-proton collisions, ATLAS-CONF-2013-054 (2013).

  10. [10]

    ATLAS collaboration, Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets using 20.1 fb −1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS Detector., ATLAS-CONF-2013-061 (2013).

  11. [11]

    CMS collaboration, Search for supersymmetry in pp collisions at \( \sqrt{s} \) = 8 TeV in events with a single lepton, large jet multiplicity and multiple b jets, CMS-SUS-13-007 (2013).

  12. [12]

    CMS collaboration, Search for supersymmetry using razor variables in events with b-jets in pp collisions at 8 TeV, CMS-PAS-SUS-13-004.

  13. [13]

    C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the Third Generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY Endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    L.J. Hall, D. Pinner and J.T. Ruderman, A Natural SUSY Higgs Near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    J.L. Feng and D. Sanford, A Natural 125 GeV Higgs Boson in the MSSM from Focus Point Supersymmetry with A-Terms, Phys. Rev. D 86 (2012) 055015 [arXiv:1205.2372] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    H. Baer, V. Barger, P. Huang, A. Mustafayev and X. Tata, Radiative natural SUSY with a 125 GeV Higgs boson, Phys. Rev. Lett. 109 (2012) 161802 [arXiv:1207.3343] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    R.L. Arnowitt and P. Nath, Loop corrections to radiative breaking of electroweak symmetry in supersymmetry, Phys. Rev. D 46 (1992) 3981 [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    S.P. Martin, Non-universal gaugino masses from non-singlet F-terms in non-minimal unified models, Phys. Rev. D 79 (2009) 095019 [arXiv:0903.3568] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    J.E. Younkin and S.P. Martin, Non-universal gaugino masses, the supersymmetric little hierarchy problem and dark matter, Phys. Rev. D 85 (2012) 055028 [arXiv:1201.2989] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    S. Akula and P. Nath, Gluino-driven Radiative Breaking, Higgs Boson Mass, Muon g − 2 and the Higgs Diphoton Decay in SUGRA Unification, Phys. Rev. D 87 (2013) 115022 [arXiv:1304.5526] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    I. Gogoladze, F. Nasir and Q. Shafi, Non-Universal Gaugino Masses and Natural Supersymmetry, Int. J. Mod. Phys. A 28 (2013) 1350046 [arXiv:1212.2593] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    J.F. Gunion and S. Mrenna, A study of SUSY signatures at the Tevatron in models with near mass degeneracy of the lightest chargino and neutralino, Phys. Rev. D 62 (2000) 015002 [hep-ph/9906270] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    S. Gori, S. Jung and L.-T. Wang, Cornering electroweakinos at the LHC, arXiv:1307.5952 [INSPIRE].

  25. [25]

    H. Baer et al., Same sign diboson signature from supersymmetry models with light higgsinos at the LHC, Phys. Rev. Lett. 110 (2013) 151801 [arXiv:1302.5816] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    N.E. Bomark, A. Kvellestad, S. Lola, P. Osland and A. Raklev, Long lived charginos in Natural SUSY?, arXiv:1310.2788 [INSPIRE].

  27. [27]

    G.F. Giudice and A. Pomarol, Mass degeneracy of the Higgsinos, Phys. Lett. B 372 (1996) 253 [hep-ph/9512337] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    J. Cao, C. Han, L. Wu, J.M. Yang and Y. Zhang, Probing Natural SUSY from Stop Pair Production at the LHC, JHEP 11 (2012) 039 [arXiv:1206.3865] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    M.L. Graesser and J. Shelton, Hunting Asymmetric Stops, Phys. Rev. Lett. 111 (2013) 121802 [arXiv:1212.4495] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    O. Buchmueller and J. Marrouche, Universal mass limits on gluino and third-generation squarks in the context of Natural-like SUSY spectra, arXiv:1304.2185 [INSPIRE].

  31. [31]

    G.D. Kribs, A. Martin and A. Menon, Natural Supersymmetry and Implications for Higgs physics, Phys. Rev. D 88 (2013) 035025 [arXiv:1305.1313] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    K. Kowalska and E.M. Sessolo, Natural MSSM after the LHC 8 TeV run, Phys. Rev. D 88 (2013) 075001 [arXiv:1307.5790] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    C. Han, K.-i. Hikasa, L. Wu, J.M. Yang and Y. Zhang, Current experimental bounds on stop mass in natural SUSY, JHEP 10 (2013) 216 [arXiv:1308.5307] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    ATLAS collaboration, Expected Performance of the ATLAS ExperimentDetector, Trigger and Physics, arXiv:0901.0512 [INSPIRE].

  35. [35]

    A.J. Barr and C. Gwenlan, The race for supersymmetry: Using m T2 for discovery, Phys. Rev. D 80 (2009) 074007 [arXiv:0907.2713] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    B.C. Allanach, S. Grab and H.E. Haber, Supersymmetric Monojets at the Large Hadron Collider, JHEP 01 (2011) 138 [Erratum ibid. 1107 (2011) 087] [Erratum ibid. 1109 (2011) 027] [arXiv:1010.4261] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    M. Drees, M. Hanussek and J.S. Kim, Light Stop Searches at the LHC with Monojet Events, Phys. Rev. D 86 (2012) 035024 [arXiv:1201.5714] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    ATLAS collaboration, Search for New Phenomena in Monojet plus Missing Transverse Momentum Final States using 10 f b −1 of pp Collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-147 (2012).

  39. [39]

    CMS collaboration, Search for new physics in monojet events in pp collisions at \( \sqrt{s} \) = 8TeV, CMS-PAS-EXO-12-048.

  40. [40]

    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  41. [41]

    A. Djouadi, M. Muhlleitner and M. Spira, Decays of supersymmetric particles: The program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, arXiv:1307.6346 [INSPIRE].

  45. [45]

    M. Cacciari, G.P. Salam and G. Soyez, The anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    A. Denner, S. Dittmaier, T. Kasprzik and A. Mück, Electroweak corrections to monojet production at the LHC, Eur. Phys. J. C 73 (2013) 2297 [arXiv:1211.5078] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    F. Caravaglios, M.L. Mangano, M. Moretti and R. Pittau, A new approach to multijet calculations in hadron collisions, Nucl. Phys. B 539 (1999) 215 [hep-ph/9807570] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    CMS collaboration, b-Jet Identification in the CMS Experiment, CMS-PAS-BTV-11-004.

  49. [49]

    N. Kidonakis, The top quark rapidity distribution and forward-backward asymmetry, Phys. Rev. D 84 (2011) 011504 [arXiv:1105.5167] [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    B. Bhattacherjee, D. Choudhury, K. Harigaya, S. Matsumoto and M.M. Nojiri, Model Independent Analysis of Interactions between Dark Matter and Various Quarks, JHEP 04 (2013) 031 [arXiv:1212.5013] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  52. [52]

    F. Mahmoudi, SuperIso v2.3: A program for calculating flavor physics observables in Supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    F. Mahmoudi, SuperIso: A program for calculating the isospin asymmetry of B → K γ in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [arXiv:0710.2067] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  54. [54]

    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  55. [55]

    S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: Accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    CMS collaboration, Higgs to tau tau (MSSM) (HCP), CMS-PAS-HIG-12-050.

  57. [57]

    J. Cao and J.M. Yang, Anomaly of Zb \( \overline{b} \) coupling revisited in MSSM and NMSSM, JHEP 12 (2008) 006 [arXiv:0810.0751] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  60. [60]

    B.S. Acharya, G. Kane and E. Kuflik, String Theories with Moduli Stabilization Imply Non-Thermal Cosmological History and Particular Dark Matter, arXiv:1006.3272 [INSPIRE].

  61. [61]

    T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230] [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    B.S. Acharya, K. Bobkov, G.L. Kane, P. Kumar and J. Shao, Explaining the Electroweak Scale and Stabilizing Moduli in M-theory, Phys. Rev. D 76 (2007) 126010 [hep-th/0701034] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  64. [64]

    B.S. Acharya, K. Bobkov, G.L. Kane, J. Shao and P. Kumar, The G 2 -MSSM: An M-theory motivated model of Particle Physics, Phys. Rev. D 78 (2008) 065038 [arXiv:0801.0478] [INSPIRE].

    ADS  Google Scholar 

  65. [65]

    K.-Y. Choi, J.E. Kim, H.M. Lee and O. Seto, Neutralino dark matter from heavy axino decay, Phys. Rev. D 77 (2008) 123501 [arXiv:0801.0491] [INSPIRE].

    ADS  Google Scholar 

  66. [66]

    H. Baer, A. Lessa, S. Rajagopalan and W. Sreethawong, Mixed axion/neutralino cold dark matter in supersymmetric models, JCAP 06 (2011) 031 [arXiv:1103.5413] [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    H. Baer, A. Lessa and W. Sreethawong, Coupled Boltzmann calculation of mixed axion/neutralino cold dark matter production in the early universe, JCAP 01 (2012) 036 [arXiv:1110.2491] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  69. [69]

    U. Chattopadhyay and D. Roy, Higgsino dark matter in a SUGRA model with nonuniversal gaugino masses, Phys. Rev. D 68 (2003) 033010 [hep-ph/0304108] [INSPIRE].

    ADS  Google Scholar 

  70. [70]

    U. Chattopadhyay, D. Choudhury, M. Drees, P. Konar and D. Roy, Looking for a heavy Higgsino LSP in collider and dark matter experiments, Phys. Lett. B 632 (2006) 114 [hep-ph/0508098] [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    LUX collaboration, D. Akerib et al., The Large Underground Xenon (LUX) Experiment, Nucl. Instrum. Meth. A 704 (2013) 111 [arXiv:1211.3788] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    XENON1T collaboration, E. Aprile, The XENON1T Dark Matter Search Experiment, arXiv:1206.6288 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to Lei Wu.

Additional information

ArXiv ePrint: 1310.4274

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Han, C., Kobakhidze, A., Liu, N. et al. Probing light higgsinos in natural SUSY from monojet signals at the LHC. J. High Energ. Phys. 2014, 49 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • Supersymmetry Phenomenology