Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
Fermionic spectral walls in kink collisions
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Remarks on sine-Gordon kink–fermion system: localized modes and scattering

29 August 2022

Vakhid A. Gani, Anastasia Gorina, … Yakov Shnir

Kink-antikink collision in the supersymmetric 𝜙4 model

18 August 2022

João G.F. Campos & Azadeh Mohammadi

Fermions on wobbling kinks: normal versus quasinormal modes

17 September 2021

João G. F. Campos & Azadeh Mohammadi

Quasinormal modes in kink excitations and kink–antikink interactions: a toy model

02 May 2020

João G. F. Campos & Azadeh Mohammadi

Resonance mediated by fermions in kink-antikink collisions

15 December 2022

Dionisio Bazeia, João G. F. Campos & Azadeh Mohammadi

Collision of two kinks with inner structure

25 February 2020

Yuan Zhong, Xiao-Long Du, … Yong-Qiang Wang

Kink-antikink scattering in a quantum vacuum

21 April 2022

Mainak Mukhopadhyay, Evangelos I. Sfakianakis, … George Zahariade

Spectral walls in multifield kink dynamics

26 August 2021

C. Adam, K. Oles, … W. J. Zakrzewski

Exotic final states in the $$\varphi ^8$$ φ 8 multi-kink collisions

22 December 2021

Vakhid A. Gani, Aliakbar Moradi Marjaneh & Kurosh Javidan

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 16 January 2023

Fermionic spectral walls in kink collisions

  • J. G. F. Campos  ORCID: orcid.org/0000-0002-1723-45621,
  • A. Mohammadi  ORCID: orcid.org/0000-0001-5720-70862,
  • J. M. Queiruga3,4,
  • A. Wereszczynski  ORCID: orcid.org/0000-0002-0353-48125 &
  • …
  • W. J. Zakrzewski6 

Journal of High Energy Physics volume 2023, Article number: 71 (2023) Cite this article

  • 88 Accesses

  • 2 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We show that a spectral wall, i.e., an obstacle in the dynamics of a bosonic soliton, which arises due to the transition of a normal mode into the continuum spectrum, exists after coupling the original bosonic model to fermions. This spectral wall can be experienced if the boson or fermion field is in an excited state. Furthermore, while passing through a spectral wall, an incoming kink-fermion bound state can be separated into purely bosonic kink, which continues to move to spatial infinity and a fermionic cloud that spreads in the region before the wall.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. D.K. Campbell, J.F. Schonfeld and C.A. Wingate, Resonance Structure in Kink-Antikink Interactions in ϕ4 Theory, Physica D 9 (1983) 1.

    Article  ADS  Google Scholar 

  2. T. Sugiyama, Kink-antikink collisions in the two-dimensional ϕ4 model, Prog. Theor. Phys. 61 (1979) 1550 [INSPIRE].

  3. N.S. Manton, K. Oles, T. Romanczukiewicz and A. Wereszczynski, Collective Coordinate Model of Kink-Antikink Collisions in ϕ4 Theory, Phys. Rev. Lett. 127 (2021) 071601 [arXiv:2106.05153] [INSPIRE].

  4. P. Dorey, K. Mersh, T. Romanczukiewicz and Y. Shnir, Kink-antikink collisions in the ϕ6 model, Phys. Rev. Lett. 107 (2011) 091602 [arXiv:1101.5951] [INSPIRE].

  5. C. Adam et al., Multikink scattering in the ϕ6 model revisited, Phys. Rev. D 106 (2022) 125003 [arXiv:2209.08849] [INSPIRE].

  6. P. Dorey and T. Romańczukiewicz, Resonant kink-antikink scattering through quasinormal modes, Phys. Lett. B 779 (2018) 117 [arXiv:1712.10235] [INSPIRE].

    Article  ADS  Google Scholar 

  7. C. Adam, D. Ciurla, K. Oles, T. Romanczukiewicz and A. Wereszczynski, Sphalerons and resonance phenomenon in kink-antikink collisions, Phys. Rev. D 104 (2021) 105022 [arXiv:2109.01834] [INSPIRE].

  8. D.K. Campbell, M. Peyrard and P. Sodano, Kink-Antikink Interactions in the Double Sine-Gordon Equation, Physica D 19 (1986) 165.

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Alonso-Izquierdo, Kink dynamics in a system of two coupled scalar fields in two space-time dimensions, Physica D 365 (2018) 12 [arXiv:1711.08784] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. A. Alonso-Izquierdo, Reflection, transmutation, annihilation and resonance in two-component kink collisions, Phys. Rev. D 97 (2018) 045016 [arXiv:1711.10034] [INSPIRE].

  11. A. Alonso-Izquierdo, Asymmetric kink scattering in a two-component scalar field theory model, Commun. Nonlinear Sci. Numer. Simul. 75 (2019) 200.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A. Alonso-Izquierdo, Kink dynamics in the MSTB model, Phys. Scripta 94 (2019) 085302 [arXiv:1804.05605] [INSPIRE].

  13. I.C. Christov, R.J. Decker, A. Demirkaya, V.A. Gani, P.G. Kevrekidis and A. Saxena, Kink-Antikink Collisions and Multi-Bounce Resonance Windows in Higher-Order Field Theories, Commun. Nonlinear Sci. Numer. Simul. 97 (2021) 105748 [arXiv:2005.00154] [INSPIRE].

  14. F. Martin-Vergara, F. Rus and F.R. Villatoro, Fractal structure of the soliton scattering for the graphene super- lattice equation, Chaos Solitons Fractals 151 (2021) 111281.

  15. P. Dorey, A. Gorina, I. Perapechka, T. Romańczukiewicz and Y. Shnir, Resonance structures in kink-antikink collisions in a deformed sine-Gordon model, JHEP 09 (2021) 145 [arXiv:2106.09560] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. G.A. Tsolias, R.J. Decker, A. Demirkaya, T.J. Alexander and P.G. Kevrekidis, Kink-antikink interaction forces and bound states in a ϕ4 model with quadratic and quartic dispersion, J. Phys. A 54 (2021) 225701 [arXiv:2012.15060] [INSPIRE].

  17. A. Moradi Marjaneh, F.C. Simas and D. Bazeia, Collisions of kinks in deformed ϕ4 and ϕ6 models, Chaos Solitons Fractals 164 (2022) 112723.

  18. M. Mohammadi and E. Momeni, Scattering of kinks in the Bϕ4 model, Chaos Solitons and Fractals: the interdisciplinary journal of Nonlinear Science and Nonequilibrium and Complex Phenomena 165 (2022) 112834 [arXiv:2207.00655] [INSPIRE].

  19. C. Adam, K. Oles, T. Romanczukiewicz and A. Wereszczynski, Spectral Walls in Soliton Collisions, Phys. Rev. Lett. 122 (2019) 241601 [arXiv:1903.12100] [INSPIRE].

  20. C. Adam, K. Oles, T. Romanczukiewicz, A. Wereszczynski and W.J. Zakrzewski, Spectral walls in multifield kink dynamics, JHEP 08 (2021) 147 [arXiv:2105.14771] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. C. Adam, K. Oles, T. Romanczukiewicz and A. Wereszczynski, Kink-antikink collisions in a weakly interacting ϕ4 model, Phys. Rev. E 102 (2020) 062214 [arXiv:1912.09371] [INSPIRE].

  22. C. Adam, K. Oles, T. Romanczukiewicz and A. Wereszczynski, Spectral walls in antikink-kink scattering in the ϕ6 model, Phys. Rev. D 106 (2022) 105027 [arXiv:2209.11479] [INSPIRE].

  23. G. Gibbons, K.-i. Maeda and Y.-i. Takamizu, Fermions on colliding branes, Phys. Lett. B 647 (2007) 1 [hep-th/0610286] [INSPIRE].

  24. P.M. Saffin and A. Tranberg, Particle transfer in braneworld collisions, JHEP 08 (2007) 072 [arXiv:0705.3606] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. J.G.F. Campos and A. Mohammadi, Fermion transfer in the ϕ4 model with a half-BPS preserving impurity, Phys. Rev. D 102 (2020) 045003 [arXiv:2004.08413] [INSPIRE].

  26. Y.-Z. Chu and T. Vachaspati, Fermions on one or fewer kinks, Phys. Rev. D 77 (2008) 025006 [arXiv:0709.3668] [INSPIRE].

  27. R. Jackiw and S.Y. Pi, Chiral gauge theory for graphene, Phys. Rev. Lett. 98 (2007) 266402 [cond-mat/0701760] [INSPIRE].

  28. A. Amado and A. Mohammadi, Coupled fermion-kink system in Jackiw-Rebbi model, Eur. Phys. J. C 77 (2017) 465 [arXiv:1406.1459] [INSPIRE].

    Article  ADS  Google Scholar 

  29. I. Perapechka and Y. Shnir, Kinks bounded by fermions, Phys. Rev. D 101 (2020) 021701 [arXiv:1910.09866] [INSPIRE].

  30. V. Klimashonok, I. Perapechka and Y. Shnir, Fermions on kinks revisited, Phys. Rev. D 100 (2019) 105003 [arXiv:1909.12736] [INSPIRE].

  31. J.G.F. Campos and A. Mohammadi, Kink-antikink collision in the supersymmetric ϕ4 model, JHEP 08 (2022) 180 [arXiv:2205.06869] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. D. Bazeia, J.G.F. Campos and A. Mohammadi, Resonance mediated by fermions in kink-antikink collisions, JHEP 12 (2022) 085 [arXiv:2208.13261] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. K. Shizuya, Superfield formulation of central charge anomalies in two-dimensional supersymmetric theories with solitons, Phys. Rev. D 69 (2004) 065021 [hep-th/0310198] [INSPIRE].

  34. C. Adam, J.M. Queiruga and A. Wereszczynski, BPS soliton-impurity models and supersymmetry, JHEP 07 (2019) 164 [arXiv:1901.04501] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. R. Rajaraman, Solitons and instantons, North-Holland (1982).

  36. N. Manton and P. Sutcliffe, Topological solitons, Cambridge University Press (2004) [https://doi.org/10.1017/CBO9780511617034].

  37. C. Halcrow and E. Babaev, Stable kink-kink and metastable kink-antikink solutions, arXiv:2211.02413 [INSPIRE].

  38. C.J. Halcrow, Vibrational quantisation of the B = 7 Skyrmion, Nucl. Phys. B 904 (2016) 106 [arXiv:1511.00682] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. C.J. Halcrow, C. King and N.S. Manton, A dynamical α-cluster model of 16O, Phys. Rev. C 95 (2017) 031303 [arXiv:1608.05048] [INSPIRE].

  40. S.B. Gudnason and C. Halcrow, B = 5 Skyrmion as a two-cluster system, Phys. Rev. D 97 (2018) 125004 [arXiv:1802.04011] [INSPIRE].

  41. J. Evslin, Manifestly Finite Derivation of the Quantum Kink Mass, JHEP 11 (2019) 161 [arXiv:1908.06710] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. J. Evslin, C. Halcrow, T. Romanczukiewicz and A. Wereszczynski, Spectral walls at one loop, Phys. Rev. D 105 (2022) 125002 [arXiv:2202.08249] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Departamento de Física, Universidade Federal da Paraíba, João Pessoa, PB, 58051-970, Brazil

    J. G. F. Campos

  2. Departamento de Física, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Recife, PE, 50670-901, Brazil

    A. Mohammadi

  3. Department of Applied Mathematics, University of Salamanca, Casas del Parque 2, 37008, Salamanca, Spain

    J. M. Queiruga

  4. Institute of Fundamental Physics and Mathematics, University of Salamanca, Plaza de la Merced 1, 37008, Salamanca, Spain

    J. M. Queiruga

  5. Institute of Physics, Jagiellonian University, Lojasiewicza 11, Kraków, Poland

    A. Wereszczynski

  6. Department of Mathematical Sciences, University of Durham, Durham, DH1 3LE, United Kingdom

    W. J. Zakrzewski

Authors
  1. J. G. F. Campos
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. A. Mohammadi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. J. M. Queiruga
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. A. Wereszczynski
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. W. J. Zakrzewski
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to A. Wereszczynski.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2211.07754

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, J.G.F., Mohammadi, A., Queiruga, J.M. et al. Fermionic spectral walls in kink collisions. J. High Energ. Phys. 2023, 71 (2023). https://doi.org/10.1007/JHEP01(2023)071

Download citation

  • Received: 19 November 2022

  • Revised: 21 December 2022

  • Accepted: 22 December 2022

  • Published: 16 January 2023

  • DOI: https://doi.org/10.1007/JHEP01(2023)071

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Field Theories in Lower Dimensions
  • Nonperturbative Effects
  • Solitons Monopoles and Instantons
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.