Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
QCD resummation for groomed jet observables at NNLL+NLO
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

The groomed and ungroomed jet mass distribution for inclusive jet production at the LHC

22 October 2018

Zhong-Bo Kang, Kyle Lee, … Felix Ringer

Jet energy drop

05 November 2020

Pedro Cal, Kyle Lee, … Wouter J. Waalewijn

Factorized Groomed Jet Mass Distribution in Inclusive Jet Processes

11 March 2019

Junegone Chay & Chul Kim

Grooming at the cusp: all-orders predictions for the transition region of jet groomers

25 November 2021

Kees Benkendorfer & Andrew J. Larkoski

Lund and Cambridge multiplicities for precision physics

24 October 2022

Rok Medves, Alba Soto-Ontoso & Gregory Soyez

Groomed jet mass as a direct probe of collinear parton dynamics

05 September 2020

Daniele Anderle, Mrinal Dasgupta, … Jack Helliwell

The jet shape at NLL′

23 May 2019

Pedro Cal, Felix Ringer & Wouter J. Waalewijn

Jet angularities in Z+jet production at the LHC

13 July 2021

Simone Caletti, Oleh Fedkevych, … Vincent Theeuwes

Improving the understanding of jet grooming in perturbation theory

09 September 2020

Andrew J. Larkoski

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 11 January 2023

QCD resummation for groomed jet observables at NNLL+NLO

  • Mrinal Dasgupta1,2,
  • Basem Kamal El-Menoufi1 &
  • Jack Helliwell  ORCID: orcid.org/0000-0002-8725-77943 

Journal of High Energy Physics volume 2023, Article number: 45 (2023) Cite this article

  • 55 Accesses

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We use a direct QCD approach to carry out the next-to-next-to-leading logarithmic (NNLL) resummation for observables groomed with the modified mass-drop tagger (Soft Drop β = 0). We focus on observables which are additive given an arbitrary number of soft-collinear emissions. For this class of observables, we arrange the structure of the NNLL terms into two distinct categories. The first defines a simplified inclusive tagger, whereby the NNLL collinear structure is directly related to ungroomed observables. The second defines a clustering correction which takes a particularly simple form when the Cambridge-Aachen (C/A) algorithm is used to cluster the jets. We provide, in addition to the QCD resummation of groomed jet mass, the first NNLL resummed predictions, matched to NLO, for a range of groomed jet angularities with mMDT grooming. Moreover, we also include for the first time in the same calculation, finite zcut effects computed at NLL level alongside the small zcut NNLL results which simultaneously improves upon both of the calculations used for groomed jet mass phenomenological studies to date. While for simplicity we focus on e+e− collisions, the essential NNLL resummation we develop is process independent and hence with the appropriate NLO matching our results are also applicable for hadron collider phenomenology.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].

    Article  ADS  Google Scholar 

  2. A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].

    Article  ADS  Google Scholar 

  3. J. Bendavid et al., Les Houches 2017: physics at TeV colliders Standard Model working group report, (2018) [arXiv:1803.07977] [INSPIRE].

  4. S. Marzani, D. Reichelt, S. Schumann, G. Soyez and V. Theeuwes, Fitting the strong coupling constant with soft-drop thrust, JHEP 11 (2019) 179 [arXiv:1906.10504] [INSPIRE].

    Article  ADS  Google Scholar 

  5. H.S. Hannesdottir, A. Pathak, M.D. Schwartz and I.W. Stewart, Prospects for strong coupling measurement at hadron colliders using soft-drop jet mass, arXiv:2210.04901 [INSPIRE].

  6. M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].

  7. S. Caletti et al., Jet angularities in Z+jet production at the LHC, JHEP 07 (2021) 076 [arXiv:2104.06920] [INSPIRE].

    Article  ADS  Google Scholar 

  8. D. Reichelt, S. Caletti, O. Fedkevych, S. Marzani, S. Schumann and G. Soyez, Phenomenology of jet angularities at the LHC, JHEP 03 (2022) 131 [arXiv:2112.09545] [INSPIRE].

    Article  ADS  Google Scholar 

  9. CMS collaboration, Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 11 (2018) 113 [arXiv:1807.05974] [INSPIRE].

  10. CMS collaboration, Study of quark and gluon jet substructure in Z+jet and dijet events from pp collisions, JHEP 01 (2022) 188 [arXiv:2109.03340] [INSPIRE].

  11. S. Marzani, L. Schunk and G. Soyez, A study of jet mass distributions with grooming, JHEP 07 (2017) 132 [arXiv:1704.02210] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338] [INSPIRE].

    Article  ADS  Google Scholar 

  13. ATLAS collaboration, Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector, Phys. Rev. Lett. 124 (2020) 222002 [arXiv:2004.03540] [INSPIRE].

  14. ATLAS collaboration, Measurement of soft-drop jet observables in pp collisions with the ATLAS detector at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 101 (2020) 052007 [arXiv:1912.09837] [INSPIRE].

  15. M. Dasgupta, F.A. Dreyer, K. Hamilton, P.F. Monni and G.P. Salam, Logarithmic accuracy of parton showers: a fixed-order study, JHEP 09 (2018) 033 [arXiv:1805.09327] [INSPIRE].

    Article  ADS  Google Scholar 

  16. G. Bell, R. Rahn and J. Talbert, Generic dijet soft functions at two-loop order: correlated emissions, JHEP 07 (2019) 101 [arXiv:1812.08690] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Bell, R. Rahn and J. Talbert, Automated calculation of dijet soft functions in the presence of jet clustering effects, PoS RADCOR2017 (2018) 047 [arXiv:1801.04877] [INSPIRE].

  18. A. Kardos, A.J. Larkoski and Z. Trócsányi, Two- and three-loop data for the groomed jet mass, Phys. Rev. D 101 (2020) 114034 [arXiv:2002.05730] [INSPIRE].

  19. Z.-B. Kang, K. Lee, X. Liu and F. Ringer, Soft drop groomed jet angularities at the LHC, Phys. Lett. B 793 (2019) 41 [arXiv:1811.06983] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].

  21. A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, A general method for the resummation of event-shape distributions in e+e− annihilation, JHEP 05 (2015) 102 [arXiv:1412.2126] [INSPIRE].

    Article  ADS  Google Scholar 

  22. E. Gerwick, S. Hoeche, S. Marzani and S. Schumann, Soft evolution of multi-jet final states, JHEP 02 (2015) 106 [arXiv:1411.7325] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. D. Anderle, M. Dasgupta, B.K. El-Menoufi, J. Helliwell and M. Guzzi, Groomed jet mass as a direct probe of collinear parton dynamics, Eur. Phys. J. C 80 (2020) 827 [arXiv:2007.10355] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Dasgupta and B.K. El-Menoufi, Dissecting the collinear structure of quark splitting at NNLL, JHEP 12 (2021) 158 [arXiv:2109.07496] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Banfi, B.K. El-Menoufi and P.F. Monni, The Sudakov radiator for jet observables and the soft physical coupling, JHEP 01 (2019) 083 [arXiv:1807.11487] [INSPIRE].

    Article  ADS  Google Scholar 

  26. Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

  27. M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in Workshop on Monte Carlo generators for HERA physics (plenary starting meeting), (1998), p. 270 [hep-ph/9907280] [INSPIRE].

  28. J.R. Andersen et al., Les Houches 2015: physics at TeV colliders Standard Model working group report, in 9th Les Houches workshop on physics at TeV colliders, (2016) [arXiv:1605.04692] [INSPIRE].

  29. A.J. Larkoski, D. Neill and J. Thaler, Jet shapes with the broadening axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].

    Article  ADS  Google Scholar 

  30. L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP 08 (2008) 022 [arXiv:0805.3515] [INSPIRE].

    Article  ADS  Google Scholar 

  31. S. Catani, B.R. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635 [INSPIRE].

    Article  ADS  Google Scholar 

  32. W. Furmanski and R. Petronzio, Singlet parton densities beyond leading order, Phys. Lett. B 97 (1980) 437 [INSPIRE].

    Article  ADS  Google Scholar 

  33. G. Curci, W. Furmanski and R. Petronzio, Evolution of parton densities beyond leading order: the nonsinglet case, Nucl. Phys. B 175 (1980) 27 [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, The two-jet rate in e+e− at next-to-next-to-leading-logarithmic order, Phys. Rev. Lett. 117 (2016) 172001 [arXiv:1607.03111] [INSPIRE].

  35. S. Catani, G. Turnock and B.R. Webber, Heavy jet mass distribution in e+e− annihilation, Phys. Lett. B 272 (1991) 368 [INSPIRE].

    Article  ADS  Google Scholar 

  36. P.E.L. Rakow and B.R. Webber, Transverse momentum moments of hadron distributions in QCD jets, Nucl. Phys. B 191 (1981) 63 [INSPIRE].

  37. J.C. Collins and D.E. Soper, Back-to-back jets in QCD, Nucl. Phys. B 193 (1981) 381 [INSPIRE].

    Article  ADS  Google Scholar 

  38. J.C. Collins and D.E. Soper, Back-to-back jets: Fourier transform from b to kT, Nucl. Phys. B 197 (1982) 446 [INSPIRE].

    Article  ADS  Google Scholar 

  39. J. Kodaira and L. Trentadue, Summing soft emission in QCD, Phys. Lett. B 112 (1982) 66 [INSPIRE].

  40. J. Kodaira and L. Trentadue, Single logarithm effects in electron-positron annihilation, Phys. Lett. B 123 (1983) 335 [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].

  42. D. de Florian and M. Grazzini, Next-to-next-to-leading logarithmic corrections at small transverse momentum in hadronic collisions, Phys. Rev. Lett. 85 (2000) 4678 [hep-ph/0008152] [INSPIRE].

  43. S. Catani, D. de Florian and M. Grazzini, Universality of nonleading logarithmic contributions in transverse momentum distributions, Nucl. Phys. B 596 (2001) 299 [hep-ph/0008184] [INSPIRE].

  44. D. de Florian and M. Grazzini, The back-to-back region in e+e− energy-energy correlation, Nucl. Phys. B 704 (2005) 387 [hep-ph/0407241] [INSPIRE].

  45. Y.-T. Chien and M.D. Schwartz, Resummation of heavy jet mass and comparison to LEP data, JHEP 08 (2010) 058 [arXiv:1005.1644] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. D. de Florian and M. Grazzini, The structure of large logarithmic corrections at small transverse momentum in hadronic collisions, Nucl. Phys. B 616 (2001) 247 [hep-ph/0108273] [INSPIRE].

  47. A.J. Larkoski, J. Thaler and W.J. Waalewijn, Gaining (mutual) information about quark/gluon discrimination, JHEP 11 (2014) 129 [arXiv:1408.3122] [INSPIRE].

    Article  ADS  Google Scholar 

  48. C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [INSPIRE].

  49. P.E.L. Rakow and B.R. Webber, Transverse momentum moments of hadron distributions in QCD jets, Nucl. Phys. B 191 (1981) 63 [INSPIRE].

  50. S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].

  51. S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [INSPIRE].

  52. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  53. D. Napoletano and G. Soyez, Computing N-subjettiness for boosted jets, JHEP 12 (2018) 031 [arXiv:1809.04602] [INSPIRE].

    Article  ADS  Google Scholar 

  54. A.J. Larkoski, Improving the understanding of jet grooming in perturbation theory, JHEP 09 (2020) 072 [arXiv:2006.14680] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Lancaster-Manchester-Sheffield Consortium for Fundamental Physics, School of Physics & Astronomy, University of Manchester, Manchester, M13 9PL, UK

    Mrinal Dasgupta & Basem Kamal El-Menoufi

  2. CERN, Theoretical Physics Department, CH-1211, Geneva 23, Switzerland

    Mrinal Dasgupta

  3. Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK

    Jack Helliwell

Authors
  1. Mrinal Dasgupta
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Basem Kamal El-Menoufi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Jack Helliwell
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jack Helliwell.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2211.03820

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, M., El-Menoufi, B.K. & Helliwell, J. QCD resummation for groomed jet observables at NNLL+NLO. J. High Energ. Phys. 2023, 45 (2023). https://doi.org/10.1007/JHEP01(2023)045

Download citation

  • Received: 14 November 2022

  • Accepted: 23 December 2022

  • Published: 11 January 2023

  • DOI: https://doi.org/10.1007/JHEP01(2023)045

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Jets and Jet Substructure
  • Resummation
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.