Skip to main content

Taxonomy of brane gravity localisations

A preprint version of the article is available at arXiv.

Abstract

Generating an effective theory of lower-dimensional gravity on a submanifold within an original higher-dimensional theory can be achieved even if the reduction space is non-compact. Localisation of gravity on such a lower-dimensional worldvolume can be interpreted in a number of ways. The first scenario, Type I, requires a mathematically consistent Kaluza-Klein style truncation down to a theory in the lower dimension, in which case solutions purely within that reduced theory exist. However, that situation is not a genuine localisation of gravity because all such solutions have higher-dimensional source extensions according to the Kaluza-Klein ansatz. Also, there is no meaningful notion of Newton’s constant for such Type I constructions.

Types II and III admit coupling to genuinely localised sources in the higher-dimensional theory, with corresponding solutions involving full sets of higher-dimensional modes. Type II puts no specific boundary conditions near the worldvolume aside from regularity away from sources. In a case where the wave equation separated in the non-compact space transverse to the worldvolume admits a normalisable zero mode, the Type III scenario requires boundary conditions near the worldvolume that permit the inclusion of that zero mode in mode expansions for gravitational wave fluctuations or potentials. In such a case, an effective theory of lower-dimensional gravity can emerge at sufficiently large worldvolume distance scales.

This taxonomy of brane gravity localisations is developed in detail for linearised perturbations about a background incorporating the vacuum solution of Salam-Sezgin theory when embedded into ten-dimensional supergravity with a hyperbolic non-compact transverse space. Interpretations of the Newton constant for the corresponding Type III localisation are then analysed.

References

  1. M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein Supergravity, Phys. Rept. 130 (1986) 1 [INSPIRE].

  2. C.M. Hull and N.P. Warner, Noncompact Gaugings From Higher Dimensions, Class. Quant. Grav. 5 (1988) 1517 [INSPIRE].

  3. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. B. Crampton, C.N. Pope and K.S. Stelle, Braneworld localisation in hyperbolic spacetime, JHEP 12 (2014) 035 [arXiv:1408.7072] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. A. Salam and E. Sezgin, Chiral Compactification on Minkowski x S2 of N = 2 Einstein-Maxwell Supergravity in Six-Dimensions, Phys. Lett. B 147 (1984) 47 [INSPIRE].

  6. M. Cvetič, G.W. Gibbons and C.N. Pope, A string and M-theory origin for the Salam-Sezgin model, Nucl. Phys. B 677 (2004) 164 [hep-th/0308026] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. D. Brecher and M.J. Perry, Ricci flat branes, Nucl. Phys. B 566 (2000) 151 [hep-th/9908018] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. A. Chamblin, S.W. Hawking and H.S. Reall, Brane world black holes, Phys. Rev. D 61 (2000) 065007 [hep-th/9909205] [INSPIRE].

  9. H. Lü and C.N. Pope, Branes on the brane, Nucl. Phys. B 598 (2001) 492 [hep-th/0008050] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. C.M. Bender, private communication on material written up in notes for mathematical physics classes given at Washington University, St. Louis, U.S.A..

  11. S.B. Giddings, E. Katz and L. Randall, Linearized gravity in brane backgrounds, JHEP 03 (2000) 023 [hep-th/0002091] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. J.M. Figueroa-O’Farrill, More Ricci flat branes, Phys. Lett. B 471 (1999) 128 [hep-th/9910086] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. J.P. Gauntlett, Branes, calibrations and supergravity, Clay Math. Proc. 3 (2004) 79 [hep-th/0305074] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  14. M.J. Duff and K.S. Stelle, Multimembrane solutions of D = 11 supergravity, Phys. Lett. B 253 (1991) 113 [INSPIRE].

  15. R. Güven, Black p-brane solutions of D = 11 supergravity theory, Phys. Lett. B 276 (1992) 49 [INSPIRE].

  16. B.S. Acharya, J.M. Figueroa-O’Farrill, C.M. Hull and B.J. Spence, Branes at conical singularities and holography, Adv. Theor. Math. Phys. 2 (1999) 1249 [hep-th/9808014] [INSPIRE].

  17. L. Brink, P. Di Vecchia and P.S. Howe, A Lagrangian Formulation of the Classical and Quantum Dynamics of Spinning Particles, Nucl. Phys. B 118 (1977) 76 [INSPIRE].

  18. C.W. Erickson, A.D. Harrold, R. Leung and K.S. Stelle, Covert Symmetry Breaking, JHEP 10 (2020) 157 [arXiv:2007.12192] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. M.J. Duff, S. Ferrara, C.N. Pope and K.S. Stelle, Massive Kaluza-Klein Modes and Effective Theories of Superstring Moduli, Nucl. Phys. B 333 (1990) 783 [INSPIRE].

  20. E. Cremmer, H. Lü, C.N. Pope and K.S. Stelle, Spectrum generating symmetries for BPS solitons, Nucl. Phys. B 520 (1998) 132 [hep-th/9707207] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Stelle.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2110.10688

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Erickson, C.W., Leung, R. & Stelle, K.S. Taxonomy of brane gravity localisations. J. High Energ. Phys. 2022, 130 (2022). https://doi.org/10.1007/JHEP01(2022)130

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2022)130

Keywords

  • Field Theories in Higher Dimensions
  • p-branes
  • Supersymmetric Effective Theories