Abstract
Understanding the production mechanism of light (anti)nuclei is one of the key challenges of nuclear physics and has important consequences for astrophysics, since it provides an input for indirect dark-matter searches in space. In this paper, the latest results about the production of light (anti)nuclei in pp collisions at \( \sqrt{s} \) = 13 TeV are presented, focusing on the comparison with the predictions of coalescence and thermal models. For the first time, the coalescence parameters B2 for deuterons and B3 for helions are compared with parameter-free theoretical predictions that are directly constrained by the femtoscopic measurement of the source radius in the same event class. A fair description of the data with a Gaussian wave function is observed for both deuteron and helion, supporting the coalescence mechanism for the production of light (anti)nuclei in pp collisions. This method paves the way for future investigations of the internal structure of more complex nuclear clusters, including the hypertriton.

References
ALICE collaboration, \( {\displaystyle \begin{array}{c}3\\ {}\Lambda \end{array}}\mathrm{H} \) and \( {\displaystyle \begin{array}{c}3\\ {}\overline{\Lambda}\end{array}}\mathrm{H} \) production in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Lett. B 754 (2016) 360 [arXiv:1506.08453] [INSPIRE].
V.T. Cocconi, T. Fazzini, G. Fidecaro, M. Legros, N.H. Lipman and A.W. Merrison, Mass analysis of the secondary particles produced by the 25 GeV proton beam of the CERN proton synchrotron, Phys. Rev. Lett. 5 (1960) 19 [INSPIRE].
S. Nagamiya, Experimental overview, Nucl. Phys. A 544 (1992) 5.
STAR collaboration, Anti-deuteron and anti-3He production in \( \sqrt{s_{\mathrm{NN}}} \) = 130 GeV Au+Au collisions, Phys. Rev. Lett. 87 (2001) 262301 [Erratum ibid. 87 (2001) 279902] [nucl-ex/0108022] [INSPIRE].
PHENIX collaboration, Deuteron and antideuteron production in Au + Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 200 GeV, Phys. Rev. Lett. 94 (2005) 122302 [nucl-ex/0406004] [INSPIRE].
BRAHMS collaboration, Rapidity dependence of deuteron production in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 200 GeV, Phys. Rev. C 83 (2011) 044906 [arXiv:1005.5427] [INSPIRE].
STAR collaboration, Beam energy dependence of d and \( \overline{d} \) productions in Au+Au collisions at RHIC, Nucl. Phys. A 967 (2017) 788 [arXiv:1704.04335] [INSPIRE].
STAR collaboration, Observation of an antimatter hypernucleus, Science 328 (2010) 58 [arXiv:1003.2030] [INSPIRE].
STAR collaboration, Observation of the antimatter helium-4 nucleus, Nature 473 (2011) 353 [Erratum ibid. 475 (2011) 412] [arXiv:1103.3312] [INSPIRE].
ALICE collaboration, Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. C 93 (2016) 024917 [arXiv:1506.08951] [INSPIRE].
ALICE collaboration, Multiplicity dependence of (anti-)deuteron production in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 794 (2019) 50 [arXiv:1902.09290] [INSPIRE].
ALICE collaboration, Measurement of deuteron spectra and elliptic flow in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV at the LHC, Eur. Phys. J. C 77 (2017) 658 [arXiv:1707.07304] [INSPIRE].
ALICE collaboration, Production of deuterons, tritons, 3He nuclei and their antinuclei in pp collisions at \( \sqrt{s} \) = 0.9, 2.76 and 7 TeV, Phys. Rev. C 97 (2018) 024615 [arXiv:1709.08522] [INSPIRE].
ALICE collaboration, Production of 4He and 4\( \overline{He} \) in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV at the LHC, Nucl. Phys. A 971 (2018) 1 [arXiv:1710.07531] [INSPIRE].
ALICE collaboration, Multiplicity dependence of light (anti-)nuclei production in p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Lett. B 800 (2020) 135043 [arXiv:1906.03136] [INSPIRE].
ALICE collaboration, Production of (anti-)3He and (anti-)3H in p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Rev. C 101 (2020) 044906 [arXiv:1910.14401] [INSPIRE].
ALICE collaboration, (Anti-)deuteron production in pp collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 80 (2020) 889 [arXiv:2003.03184] [INSPIRE].
K. Blum, K.C.Y. Ng, R. Sato and M. Takimoto, Cosmic rays, antihelium, and an old navy spotlight, Phys. Rev. D 96 (2017) 103021 [arXiv:1704.05431] [INSPIRE].
V. Poulin, P. Salati, I. Cholis, M. Kamionkowski and J. Silk, Where do the AMS-02 antihelium events come from?, Phys. Rev. D 99 (2019) 023016 [arXiv:1808.08961] [INSPIRE].
M. Korsmeier, F. Donato and N. Fornengo, Prospects to verify a possible dark matter hint in cosmic antiprotons with antideuterons and antihelium, Phys. Rev. D 97 (2018) 103011 [arXiv:1711.08465] [INSPIRE].
Y. Cui, J.D. Mason and L. Randall, General analysis of antideuteron searches for dark matter, JHEP 11 (2010) 017 [arXiv:1006.0983] [INSPIRE].
J. Cleymans, S. Kabana, I. Kraus, H. Oeschler, K. Redlich and N. Sharma, Antimatter production in proton-proton and heavy-ion collisions at ultrarelativistic energies, Phys. Rev. C 84 (2011) 054916 [arXiv:1105.3719] [INSPIRE].
A. Andronic, P. Braun-Munzinger, J. Stachel and H. Stocker, Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions, Phys. Lett. B 697 (2011) 203 [arXiv:1010.2995] [INSPIRE].
F. Becattini, E. Grossi, M. Bleicher, J. Steinheimer and R. Stock, Centrality dependence of hadronization and chemical freeze-out conditions in heavy ion collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Rev. C 90 (2014) 054907 [arXiv:1405.0710] [INSPIRE].
V. Vovchenko and H. Stoecker, Examination of the sensitivity of the thermal fits to heavy-ion hadron yield data to the modeling of the eigenvolume interactions, Phys. Rev. C 95 (2017) 044904 [arXiv:1606.06218] [INSPIRE].
A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Decoding the phase structure of QCD via particle production at high energy, Nature 561 (2018) 321 [arXiv:1710.09425] [INSPIRE].
N. Sharma, J. Cleymans, B. Hippolyte and M. Paradza, A comparison of p-p, p-Pb, Pb-Pb collisions in the thermal model: multiplicity dependence of thermal parameters, Phys. Rev. C 99 (2019) 044914 [arXiv:1811.00399] [INSPIRE].
V. Vovchenko, B. Dönigus and H. Stoecker, Canonical statistical model analysis of p-p , p-Pb, and Pb-Pb collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. C 100 (2019) 054906 [arXiv:1906.03145] [INSPIRE].
S.T. Butler and C.A. Pearson, Deuterons from high-energy proton bombardment of matter, Phys. Rev. 129 (1963) 836 [INSPIRE].
J.I. Kapusta, Mechanisms for deuteron production in relativistic nuclear collisions, Phys. Rev. C 21 (1980) 1301 [INSPIRE].
W. Zhao, L. Zhu, H. Zheng, C.M. Ko and H. Song, Spectra and flow of light nuclei in relativistic heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider, Phys. Rev. C 98 (2018) 054905 [arXiv:1807.02813] [INSPIRE].
R. Scheibl and U.W. Heinz, Coalescence and flow in ultrarelativistic heavy ion collisions, Phys. Rev. C 59 (1999) 1585 [nucl-th/9809092] [INSPIRE].
K.-J. Sun, C.M. Ko and B. Dönigus, Suppression of light nuclei production in collisions of small systems at the Large Hadron Collider, Phys. Lett. B 792 (2019) 132 [arXiv:1812.05175] [INSPIRE].
M. Kachelrieß, S. Ostapchenko and J. Tjemsland, Alternative coalescence model for deuteron, tritium, helium-3 and their antinuclei, Eur. Phys. J. A 56 (2020) 4 [arXiv:1905.01192] [INSPIRE].
ALICE collaboration, Jet-associated deuteron production in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 819 (2021) 136440 [arXiv:2011.05898] [INSPIRE].
K. Blum and M. Takimoto, Nuclear coalescence from correlation functions, Phys. Rev. C 99 (2019) 044913 [arXiv:1901.07088] [INSPIRE].
ALICE collaboration, Search for a common baryon source in high-multiplicity pp collisions at the LHC, Phys. Lett. B 811 (2020) 135849 [arXiv:2004.08018] [INSPIRE].
ALICE collaboration, The ALICE experiment at the CERN LHC, 2008 JINST 3 S08002 [INSPIRE].
ALICE collaboration, Performance of the ALICE experiment at the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044 [arXiv:1402.4476] [INSPIRE].
ALICE collaboration, Alignment of the ALICE inner tracking system with cosmic-ray tracks, 2010 JINST 5 P03003 [arXiv:1001.0502] [INSPIRE].
J. Alme et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events, Nucl. Instrum. Meth. A 622 (2010) 316 [arXiv:1001.1950] [INSPIRE].
A. Akindinov et al., Performance of the ALICE time-of-flight detector at the LHC, Eur. Phys. J. Plus 128 (2013) 44 [INSPIRE].
ALICE collaboration, Performance of the ALICE VZERO system, 2013 JINST 8 P10016 [arXiv:1306.3130] [INSPIRE].
ALICE collaboration, Multiplicity dependence of light-flavor hadron production in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. C 99 (2019) 024906 [arXiv:1807.11321] [INSPIRE].
ALICE collaboration, Multiplicity dependence of (multi-)strange hadron production in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 80 (2020) 167 [arXiv:1908.01861] [INSPIRE].
ALICE collaboration, Pseudorapidity density of charged particles in p+Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Rev. Lett. 110 (2013) 032301 [arXiv:1210.3615] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 tune, Eur. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].
GEANT4 collaboration, GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
ALICE collaboration, Measurement of the low-energy antideuteron inelastic cross section, Phys. Rev. Lett. 125 (2020) 162001 [arXiv:2005.11122] [INSPIRE].
R. Brun et al., GEANT: detector description and simulation tool, CERN-W5013, CERN, Geneva, Switzerland (2008).
C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Statist. Phys. 52 (1988) 479 [INSPIRE].
E. Schnedermann, J. Sollfrank and U.W. Heinz, Thermal phenomenology of hadrons from 200-A/GeV S+S collisions, Phys. Rev. C 48 (1993) 2462 [nucl-th/9307020] [INSPIRE].
STAR collaboration, Identified particle elliptic flow in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 130 GeV, Phys. Rev. Lett. 87 (2001) 182301 [nucl-ex/0107003] [INSPIRE].
P.J. Siemens and J.O. Rasmussen, Evidence for a blast wave from compress nuclear matter, Phys. Rev. Lett. 42 (1979) 880 [INSPIRE].
F. Bellini, K. Blum, A.P. Kalweit and M. Puccio, Examination of coalescence as the origin of nuclei in hadronic collisions, Phys. Rev. C 103 (2021) 014907 [arXiv:2007.01750] [INSPIRE].
D.R. Entem, R. Machleidt and Y. Nosyk, High-quality two-nucleon potentials up to fifth order of the chiral expansion, Phys. Rev. C 96 (2017) 024004 [arXiv:1703.05454] [INSPIRE].
F. Bellini and A.P. Kalweit, Testing production scenarios for (anti-)(hyper-)nuclei and exotica at energies available at the CERN Large Hadron Collider, Phys. Rev. C 99 (2019) 054905 [arXiv:1807.05894] [INSPIRE].
R.J.N. Phillips, The two-nucleon interaction, Repts. Prog. Phys. 22 (1959) 562.
E. Tiesinga, P.J. Mohr, D.B. Newell and B.N. Taylor, CODATA recommended values of the fundamental physical constants: 2018, Rev. Mod. Phys. 93 (2021) 025010 [INSPIRE].
V. Vovchenko, B. Dönigus and H. Stoecker, Multiplicity dependence of light nuclei production at LHC energies in the canonical statistical model, Phys. Lett. B 785 (2018) 171 [arXiv:1808.05245] [INSPIRE].