Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Production of light (anti)nuclei in pp collisions at \( \sqrt{s} \) = 13 TeV
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Production of light (anti)nuclei in pp collisions at $$\sqrt{s} = 5.02$$ s = 5.02  TeV

04 April 2022

S. Acharya, D. Adamová, … ALICE Collaboration

Selected highlights of the production of light (anti-)(hyper-)nuclei in ultra-relativistic heavy-ion collisions

04 November 2020

Benjamin Dönigus

Energy dependence of light (anti)nuclei and (anti)hypertriton production in the Au-Au collision from $\sqrt{s_{NN}} = 11.5$ s N N = 11 . 5 to 5020 GeV

03 September 2018

Zi-Jian Dong, Quan-Yu Wang, … Ben-Hao Sa

Light (anti-)nuclei and (anti-)hypertriton production in pp collisions at $$\sqrt{s} =0.90, 2.76$$ s = 0.90 , 2.76 and 7 TeV

17 September 2020

Nserdin A. Ragab, Zhi-Lei She & Gang Chen

Production of light nuclei at colliders – coalescence vs. thermal model

21 December 2020

Stanisław Mrówczyński

Collision system size dependence of light (anti-)nuclei and (anti-)hypertriton production in high energy nuclear collisions

03 February 2022

Zhi-Lei She, Liang Zheng, … Gang Chen

Search for light long-lived neutral particles produced in pp collisions at $$\sqrt{s} = 13~\mathrm {TeV}$$s=13TeV and decaying into collimated leptons or light hadrons with the ATLAS detector

20 May 2020

ATLAS Collaboration, G. Aad, … L. Zwalinski

Light (anti)nuclei production in Cu+Cu collisions at $\sqrt{s_{NN}} = 200$sNN=200 GeV

20 September 2019

Feng-xian Liu, Gang Chen, … Yi-long Xie

Search for new physics in final states with a single photon and missing transverse momentum in proton-proton collisions at s = 13 $$ \sqrt{s}=13 $$ TeV

13 February 2019

The CMS collaboration, A. M. Sirunyan, … N. Woods

Download PDF
  • Regular Article - Experimental Physics
  • Open Access
  • Published: 20 January 2022

Production of light (anti)nuclei in pp collisions at \( \sqrt{s} \) = 13 TeV

  • The ALICE collaboration,
  • S. Acharya144,
  • D. Adamová98,
  • A. Adler76,
  • J. Adolfsson83,
  • G. Aglieri Rinella35,
  • M. Agnello31,
  • N. Agrawal55,
  • Z. Ahammed144,
  • S. Ahmad16,
  • S. U. Ahn78,
  • I. Ahuja39,
  • Z. Akbar52,
  • A. Akindinov95,
  • M. Al-Turany111,
  • S. N. Alam16,41,
  • D. Aleksandrov91,
  • B. Alessandro61,
  • H. M. Alfanda7,
  • R. Alfaro Molina73,
  • B. Ali16,
  • Y. Ali14,
  • A. Alici26,
  • N. Alizadehvandchali128,
  • A. Alkin35,
  • J. Alme21,
  • T. Alt70,
  • L. Altenkamper21,
  • I. Altsybeev116,
  • M. N. Anaam7,
  • C. Andrei49,
  • D. Andreou93,
  • A. Andronic147,
  • M. Angeletti35,
  • V. Anguelov107,
  • F. Antinori58,
  • P. Antonioli55,
  • C. Anuj16,
  • N. Apadula82,
  • L. Aphecetche118,
  • H. Appelshäuser70,
  • S. Arcelli26,
  • R. Arnaldi61,
  • I. C. Arsene20,
  • M. Arslandok149,107,
  • A. Augustinus35,
  • R. Averbeck111,
  • S. Aziz80,
  • M. D. Azmi16,
  • A. Badalà57,
  • Y. W. Baek42,
  • X. Bai132,111,
  • R. Bailhache70,
  • Y. Bailung51,
  • R. Bala104,
  • A. Balbino31,
  • A. Baldisseri141,
  • B. Balis2,
  • D. Banerjee4,
  • R. Barbera27,
  • L. Barioglio108,
  • M. Barlou87,
  • G. G. Barnaföldi148,
  • L. S. Barnby97,
  • V. Barret138,
  • C. Bartels131,
  • K. Barth35,
  • E. Bartsch70,
  • F. Baruffaldi28,
  • N. Bastid138,
  • S. Basu83,
  • G. Batigne118,
  • B. Batyunya77,
  • D. Bauri50,
  • J. L. Bazo Alba115,
  • I. G. Bearden92,
  • C. Beattie149,
  • I. Belikov140,
  • A. D. C. Bell Hechavarria147,
  • F. Bellini26,
  • R. Bellwied128,
  • S. Belokurova116,
  • V. Belyaev96,
  • G. Bencedi148,71,
  • S. Beole25,
  • A. Bercuci49,
  • Y. Berdnikov101,
  • A. Berdnikova107,
  • L. Bergmann107,
  • M. G. Besoiu69,
  • L. Betev35,
  • P. P. Bhaduri144,
  • A. Bhasin104,
  • I. R. Bhat104,
  • M. A. Bhat4,
  • B. Bhattacharjee43,
  • P. Bhattacharya23,
  • L. Bianchi25,
  • N. Bianchi53,
  • J. Bielčík38,
  • J. Bielčíková98,
  • J. Biernat121,
  • A. Bilandzic108,
  • G. Biro148,
  • S. Biswas4,
  • J. T. Blair122,
  • D. Blau91,84,
  • M. B. Blidaru111,
  • C. Blume70,
  • G. Boca29,59,
  • F. Bock99,
  • A. Bogdanov96,
  • S. Boi23,
  • J. Bok63,
  • L. Boldizsár148,
  • A. Bolozdynya96,
  • M. Bombara39,
  • P. M. Bond35,
  • G. Bonomi143,59,
  • H. Borel141,
  • A. Borissov84,
  • H. Bossi149,
  • E. Botta25,
  • L. Bratrud70,
  • P. Braun-Munzinger111,
  • M. Bregant124,
  • M. Broz38,
  • G. E. Bruno110,34,
  • M. D. Buckland131,
  • D. Budnikov112,
  • H. Buesching70,
  • S. Bufalino31,
  • O. Bugnon118,
  • P. Buhler117,
  • Z. Buthelezi74,135,
  • J. B. Butt14,
  • A. Bylinkin130,
  • S. A. Bysiak121,
  • M. Cai28,7,
  • H. Caines149,
  • A. Caliva111,
  • E. Calvo Villar115,
  • J. M. M. Camacho123,
  • R. S. Camacho46,
  • P. Camerini24,
  • F. D. M. Canedo124,
  • F. Carnesecchi35,26,
  • R. Caron141,
  • J. Castillo Castellanos141,
  • E. A. R. Casula23,
  • F. Catalano31,
  • C. Ceballos Sanchez77,
  • P. Chakraborty50,
  • S. Chandra144,
  • S. Chapeland35,
  • M. Chartier131,
  • S. Chattopadhyay144,
  • S. Chattopadhyay113,
  • A. Chauvin23,
  • T. G. Chavez46,
  • T. Cheng7,
  • C. Cheshkov139,
  • B. Cheynis139,
  • V. Chibante Barroso35,
  • D. D. Chinellato125,
  • S. Cho63,
  • P. Chochula35,
  • P. Christakoglou93,
  • C. H. Christensen92,
  • P. Christiansen83,
  • T. Chujo137,
  • C. Cicalo56,
  • L. Cifarelli26,
  • F. Cindolo55,
  • M. R. Ciupek111,
  • G. Clai151,55,
  • J. Cleymans127,
  • F. Colamaria54,
  • J. S. Colburn114,
  • D. Colella110,54,34,148,
  • A. Collu82,
  • M. Colocci35,
  • M. Concas152,61,
  • G. Conesa Balbastre81,
  • Z. Conesa del Valle80,
  • G. Contin24,
  • J. G. Contreras38,
  • M. L. Coquet141,
  • T. M. Cormier99,
  • P. Cortese32,
  • M. R. Cosentino126,
  • F. Costa35,
  • S. Costanza29,59,
  • P. Crochet138,
  • R. Cruz-Torres82,
  • E. Cuautle71,
  • P. Cui7,
  • L. Cunqueiro99,
  • A. Dainese58,
  • M. C. Danisch107,
  • A. Danu69,
  • I. Das113,
  • P. Das89,
  • P. Das4,
  • S. Das4,
  • S. Dash50,
  • S. De89,
  • A. De Caro30,
  • G. de Cataldo54,
  • L. De Cilladi25,
  • J. de Cuveland40,
  • A. De Falco23,
  • D. De Gruttola30,
  • N. De Marco61,
  • C. De Martin24,
  • S. De Pasquale30,
  • S. Deb51,
  • H. F. Degenhardt124,
  • K. R. Deja145,
  • L. Dello Stritto30,
  • W. Deng7,
  • P. Dhankher19,
  • D. Di Bari34,
  • A. Di Mauro35,
  • R. A. Diaz8,
  • T. Dietel127,
  • Y. Ding139,7,
  • R. Divià35,
  • D. U. Dixit19,
  • Ø. Djuvsland21,
  • U. Dmitrieva65,
  • J. Do63,
  • A. Dobrin69,
  • B. Dönigus70,
  • O. Dordic20,
  • A. K. Dubey144,
  • A. Dubla111,93,
  • S. Dudi103,
  • M. Dukhishyam89,
  • P. Dupieux138,
  • N. Dzalaiova13,
  • T. M. Eder147,
  • R. J. Ehlers99,
  • V. N. Eikeland21,
  • F. Eisenhut70,
  • D. Elia54,
  • B. Erazmus118,
  • F. Ercolessi26,
  • F. Erhardt102,
  • A. Erokhin116,
  • M. R. Ersdal21,
  • B. Espagnon80,
  • G. Eulisse35,
  • D. Evans114,
  • S. Evdokimov94,
  • L. Fabbietti108,
  • M. Faggin28,
  • J. Faivre81,
  • F. Fan7,
  • A. Fantoni53,
  • M. Fasel99,
  • P. Fecchio31,
  • A. Feliciello61,
  • G. Feofilov116,
  • A. Fernández Téllez46,
  • A. Ferrero141,
  • A. Ferretti25,
  • V. J. G. Feuillard107,
  • J. Figiel121,
  • S. Filchagin112,
  • D. Finogeev65,
  • F. M. Fionda56,21,
  • G. Fiorenza35,110,
  • F. Flor128,
  • A. N. Flores122,
  • S. Foertsch74,
  • P. Foka111,
  • S. Fokin91,
  • E. Fragiacomo62,
  • E. Frajna148,
  • U. Fuchs35,
  • N. Funicello30,
  • C. Furget81,
  • A. Furs65,
  • J. J. Gaardhøje92,
  • M. Gagliardi25,
  • A. M. Gago115,
  • A. Gal140,
  • C. D. Galvan123,
  • P. Ganoti87,
  • C. Garabatos111,
  • J. R. A. Garcia46,
  • E. Garcia-Solis10,
  • K. Garg118,
  • C. Gargiulo35,
  • A. Garibli90,
  • K. Garner147,
  • P. Gasik111,
  • E. F. Gauger122,
  • A. Gautam130,
  • M. B. Gay Ducati72,
  • M. Germain118,
  • P. Ghosh144,
  • S. K. Ghosh4,
  • M. Giacalone26,
  • P. Gianotti53,
  • P. Giubellino111,61,
  • P. Giubilato28,
  • A. M. C. Glaenzer141,
  • P. Glässel107,
  • D. J. Q. Goh85,
  • V. Gonzalez146,
  • L. H. González-Trueba73,
  • S. Gorbunov40,
  • M. Gorgon2,
  • L. Görlich121,
  • S. Gotovac36,
  • V. Grabski73,
  • L. K. Graczykowski145,
  • L. Greiner82,
  • A. Grelli64,
  • C. Grigoras35,
  • V. Grigoriev96,
  • S. Grigoryan77,1,
  • F. Grosa35,61,
  • J. F. Grosse-Oetringhaus35,
  • R. Grosso111,
  • G. G. Guardiano125,
  • R. Guernane81,
  • M. Guilbaud118,
  • K. Gulbrandsen92,
  • T. Gunji136,
  • W. Guo7,
  • A. Gupta104,
  • R. Gupta104,
  • S. P. Guzman46,
  • L. Gyulai148,
  • M. K. Habib111,
  • C. Hadjidakis80,
  • G. Halimoglu70,
  • H. Hamagaki85,
  • M. Hamid7,
  • R. Hannigan122,
  • M. R. Haque145,89,
  • A. Harlenderova111,
  • J. W. Harris149,
  • A. Harton10,
  • J. A. Hasenbichler35,
  • H. Hassan99,
  • D. Hatzifotiadou55,
  • P. Hauer44,
  • L. B. Havener149,
  • S. T. Heckel108,
  • E. Hellbär111,
  • H. Helstrup37,
  • T. Herman38,
  • E. G. Hernandez46,
  • G. Herrera Corral9,
  • F. Herrmann147,
  • K. F. Hetland37,
  • H. Hillemanns35,
  • C. Hills131,
  • B. Hippolyte140,
  • B. Hofman64,
  • B. Hohlweger93,
  • J. Honermann147,
  • G. H. Hong150,
  • D. Horak38,
  • S. Hornung111,
  • A. Horzyk2,
  • R. Hosokawa15,
  • Y. Hou7,
  • P. Hristov35,
  • C. Hughes134,
  • P. Huhn70,
  • L. M. Huhta129,
  • T. J. Humanic100,
  • H. Hushnud113,
  • L. A. Husova147,
  • A. Hutson128,
  • D. Hutter40,
  • J. P. Iddon35,131,
  • R. Ilkaev112,
  • H. Ilyas14,
  • M. Inaba137,
  • G. M. Innocenti35,
  • M. Ippolitov91,
  • A. Isakov38,98,
  • M. S. Islam113,
  • M. Ivanov111,
  • V. Ivanov101,
  • V. Izucheev94,
  • M. Jablonski2,
  • B. Jacak82,
  • N. Jacazio35,
  • P. M. Jacobs82,
  • S. Jadlovska120,
  • J. Jadlovsky120,
  • S. Jaelani64,
  • C. Jahnke125,124,
  • M. J. Jakubowska145,
  • A. Jalotra104,
  • M. A. Janik145,
  • T. Janson76,
  • M. Jercic102,
  • O. Jevons114,
  • A. A. P. Jimenez71,
  • F. Jonas99,147,
  • P. G. Jones114,
  • J. M. Jowett35,111,
  • J. Jung70,
  • M. Jung70,
  • A. Junique35,
  • A. Jusko114,
  • J. Kaewjai119,
  • P. Kalinak66,
  • A. S. Kalteyer111,
  • A. Kalweit35,
  • V. Kaplin96,
  • A. Karasu Uysal79,
  • D. Karatovic102,
  • O. Karavichev65,
  • T. Karavicheva65,
  • P. Karczmarczyk145,
  • E. Karpechev65,
  • A. Kazantsev91,
  • U. Kebschull76,
  • R. Keidel48,
  • D. L. D. Keijdener64,
  • M. Keil35,
  • B. Ketzer44,
  • Z. Khabanova93,
  • A. M. Khan7,
  • S. Khan16,
  • A. Khanzadeev101,
  • Y. Kharlov94,84,
  • A. Khatun16,
  • A. Khuntia121,
  • B. Kileng37,
  • B. Kim17,63,
  • C. Kim17,
  • D. J. Kim129,
  • E. J. Kim75,
  • J. Kim150,
  • J. S. Kim42,
  • J. Kim107,
  • J. Kim150,
  • J. Kim75,
  • M. Kim107,
  • S. Kim18,
  • T. Kim150,
  • S. Kirsch70,
  • I. Kisel40,
  • S. Kiselev95,
  • A. Kisiel145,
  • J. P. Kitowski2,
  • J. L. Klay6,
  • J. Klein35,
  • S. Klein82,
  • C. Klein-Bösing147,
  • M. Kleiner70,
  • T. Klemenz108,
  • A. Kluge35,
  • A. G. Knospe128,
  • C. Kobdaj119,
  • M. K. Köhler107,
  • T. Kollegger111,
  • A. Kondratyev77,
  • N. Kondratyeva96,
  • E. Kondratyuk94,
  • J. Konig70,
  • S. A. Konigstorfer108,
  • P. J. Konopka35,
  • G. Kornakov145,
  • S. D. Koryciak2,
  • A. Kotliarov98,
  • O. Kovalenko88,
  • V. Kovalenko116,
  • M. Kowalski121,
  • I. Králik66,
  • A. Kravčáková39,
  • L. Kreis111,
  • M. Krivda114,66,
  • F. Krizek98,
  • K. Krizkova Gajdosova38,
  • M. Kroesen107,
  • M. Krüger70,
  • E. Kryshen101,
  • M. Krzewicki40,
  • V. Kučera35,
  • C. Kuhn140,
  • P. G. Kuijer93,
  • T. Kumaoka137,
  • D. Kumar144,
  • L. Kumar103,
  • N. Kumar103,
  • S. Kundu35,
  • P. Kurashvili88,
  • A. Kurepin65,
  • A. B. Kurepin65,
  • A. Kuryakin112,
  • S. Kushpil98,
  • J. Kvapil114,
  • M. J. Kweon63,
  • J. Y. Kwon63,
  • Y. Kwon150,
  • S. L. La Pointe40,
  • P. La Rocca27,
  • Y. S. Lai82,
  • A. Lakrathok119,
  • M. Lamanna35,
  • R. Langoy133,
  • K. Lapidus35,
  • P. Larionov35,53,
  • E. Laudi35,
  • L. Lautner35,108,
  • R. Lavicka117,38,
  • T. Lazareva116,
  • R. Lea143,24,59,
  • J. Lehrbach40,
  • R. C. Lemmon97,
  • I. León Monzón123,
  • E. D. Lesser19,
  • M. Lettrich35,108,
  • P. Lévai148,
  • X. Li11,
  • X. L. Li7,
  • J. Lien133,
  • R. Lietava114,
  • B. Lim17,
  • S. H. Lim17,
  • V. Lindenstruth40,
  • A. Lindner49,
  • C. Lippmann111,
  • A. Liu19,
  • D. H. Liu7,
  • J. Liu131,
  • I. M. Lofnes21,
  • V. Loginov96,
  • C. Loizides99,
  • P. Loncar36,
  • J. A. Lopez107,
  • X. Lopez138,
  • E. López Torres8,
  • J. R. Luhder147,
  • M. Lunardon28,
  • G. Luparello62,
  • Y. G. Ma41,
  • A. Maevskaya65,
  • M. Mager35,
  • T. Mahmoud44,
  • A. Maire140,
  • M. Malaev101,
  • N. M. Malik104,
  • Q. W. Malik20,
  • S. K. Malik104,
  • L. Malinina153,77,
  • D. Mal’Kevich95,
  • N. Mallick51,
  • P. Malzacher111,
  • G. Mandaglio33,57,
  • V. Manko91,
  • F. Manso138,
  • V. Manzari54,
  • Y. Mao7,
  • J. Mareš68,
  • G. V. Margagliotti24,
  • A. Margotti55,
  • A. Marín111,
  • C. Markert122,
  • M. Marquard70,
  • N. A. Martin107,
  • P. Martinengo35,
  • J. L. Martinez128,
  • M. I. Martínez46,
  • G. Martínez García118,
  • S. Masciocchi111,
  • M. Masera25,
  • A. Masoni56,
  • L. Massacrier80,
  • A. Mastroserio142,54,
  • A. M. Mathis108,
  • O. Matonoha83,
  • P. F. T. Matuoka124,
  • A. Matyja121,
  • C. Mayer121,
  • A. L. Mazuecos35,
  • F. Mazzaschi25,
  • M. Mazzilli35,
  • M. A. Mazzoni60,
  • J. E. Mdhluli135,
  • A. F. Mechler70,
  • F. Meddi22,
  • Y. Melikyan65,
  • A. Menchaca-Rocha73,
  • E. Meninno117,30,
  • A. S. Menon128,
  • M. Meres13,
  • S. Mhlanga127,74,
  • Y. Miake137,
  • L. Micheletti61,
  • L. C. Migliorin139,
  • D. L. Mihaylov108,
  • K. Mikhaylov77,95,
  • A. N. Mishra148,
  • D. Miśkowiec111,
  • A. Modak4,
  • A. P. Mohanty64,
  • B. Mohanty89,
  • M. Mohisin Khan16,
  • M. A. Molander45,
  • Z. Moravcova92,
  • C. Mordasini108,
  • D. A. Moreira De Godoy147,
  • I. Morozov65,
  • A. Morsch35,
  • T. Mrnjavac35,
  • V. Muccifora53,
  • E. Mudnic36,
  • B. J. Mughal109,
  • D. Mühlheim147,
  • S. Muhuri144,
  • J. D. Mulligan82,
  • A. Mulliri23,
  • M. G. Munhoz124,
  • R. H. Munzer70,
  • H. Murakami136,
  • S. Murray127,
  • L. Musa35,
  • J. Musinsky66,
  • J. W. Myrcha145,
  • B. Naik135,50,
  • R. Nair88,
  • B. K. Nandi50,
  • R. Nania55,
  • E. Nappi54,
  • A. F. Nassirpour83,
  • A. Nath107,
  • C. Nattrass134,
  • A. Neagu20,
  • L. Nellen71,
  • S. V. Nesbo37,
  • G. Neskovic40,
  • D. Nesterov116,
  • B. S. Nielsen92,
  • S. Nikolaev91,
  • S. Nikulin91,
  • V. Nikulin101,
  • F. Noferini55,
  • S. Noh12,
  • P. Nomokonov77,
  • J. Norman131,
  • N. Novitzky137,
  • P. Nowakowski145,
  • A. Nyanin91,
  • J. Nystrand21,
  • M. Ogino85,
  • A. Ohlson83,
  • V. A. Okorokov96,
  • J. Oleniacz145,
  • A. C. Oliveira Da Silva134,
  • M. H. Oliver149,
  • A. Onnerstad129,
  • C. Oppedisano61,
  • A. Ortiz Velasquez71,
  • T. Osako47,
  • A. Oskarsson83,
  • J. Otwinowski121,
  • M. Oya47,
  • K. Oyama85,
  • Y. Pachmayer107,
  • S. Padhan50,
  • D. Pagano143,59,
  • G. Paić71,
  • A. Palasciano54,
  • J. Pan146,
  • S. Panebianco141,
  • P. Pareek144,
  • J. Park63,
  • J. E. Parkkila129,
  • S. P. Pathak128,
  • R. N. Patra104,35,
  • B. Paul23,
  • H. Pei7,
  • T. Peitzmann64,
  • X. Peng7,
  • L. G. Pereira72,
  • H. Pereira Da Costa141,
  • D. Peresunko91,84,
  • G. M. Perez8,
  • S. Perrin141,
  • Y. Pestov5,
  • V. Petráček38,
  • M. Petrovici49,
  • R. P. Pezzi118,72,
  • S. Piano62,
  • M. Pikna13,
  • P. Pillot118,
  • O. Pinazza55,35,
  • L. Pinsky128,
  • C. Pinto27,
  • S. Pisano53,
  • M. Płoskoń82,
  • M. Planinic102,
  • F. Pliquett70,
  • M. G. Poghosyan99,
  • B. Polichtchouk94,
  • S. Politano31,
  • N. Poljak102,
  • A. Pop49,
  • S. Porteboeuf-Houssais138,
  • J. Porter82,
  • V. Pozdniakov77,
  • S. K. Prasad4,
  • R. Preghenella55,
  • F. Prino61,
  • C. A. Pruneau146,
  • I. Pshenichnov65,
  • M. Puccio35,
  • S. Qiu93,
  • L. Quaglia25,
  • R. E. Quishpe128,
  • S. Ragoni114,
  • A. Rakotozafindrabe141,
  • L. Ramello32,
  • F. Rami140,
  • S. A. R. Ramirez46,
  • A. G. T. Ramos34,
  • T. A. Rancien81,
  • R. Raniwala105,
  • S. Raniwala105,
  • S. S. Räsänen45,
  • R. Rath51,
  • I. Ravasenga93,
  • K. F. Read99,134,
  • A. R. Redelbach40,
  • K. Redlich154,88,
  • A. Rehman21,
  • P. Reichelt70,
  • F. Reidt35,
  • H. A. Reme-ness37,
  • R. Renfordt70,
  • Z. Rescakova39,
  • K. Reygers107,
  • A. Riabov101,
  • V. Riabov101,
  • T. Richert83,
  • M. Richter20,
  • W. Riegler35,
  • F. Riggi27,
  • C. Ristea69,
  • M. Rodríguez Cahuantzi46,
  • K. Røed20,
  • R. Rogalev94,
  • E. Rogochaya77,
  • T. S. Rogoschinski70,
  • D. Rohr35,
  • D. Röhrich21,
  • P. F. Rojas46,
  • P. S. Rokita145,
  • F. Ronchetti53,
  • A. Rosano33,57,
  • E. D. Rosas71,
  • A. Rossi58,
  • A. Rotondi29,59,
  • A. Roy51,
  • P. Roy113,
  • S. Roy50,
  • N. Rubini26,
  • O. V. Rueda83,
  • D. Ruggiano145,
  • R. Rui24,
  • B. Rumyantsev77,
  • P. G. Russek2,
  • R. Russo93,
  • A. Rustamov90,
  • E. Ryabinkin91,
  • Y. Ryabov101,
  • A. Rybicki121,
  • H. Rytkonen129,
  • W. Rzesa145,
  • O. A. M. Saarimaki45,
  • R. Sadek118,
  • S. Sadovsky94,
  • J. Saetre21,
  • K. Šafařík38,
  • S. K. Saha144,
  • S. Saha89,
  • B. Sahoo50,
  • P. Sahoo50,
  • R. Sahoo51,
  • S. Sahoo67,
  • D. Sahu51,
  • P. K. Sahu67,
  • J. Saini144,
  • S. Sakai137,
  • M. P. Salvan111,
  • S. Sambyal104,
  • V. Samsonov101,96,
  • D. Sarkar146,
  • N. Sarkar144,
  • P. Sarma43,
  • V. M. Sarti108,
  • M. H. P. Sas149,
  • J. Schambach99,
  • H. S. Scheid70,
  • C. Schiaua49,
  • R. Schicker107,
  • A. Schmah107,
  • C. Schmidt111,
  • H. R. Schmidt106,
  • M. O. Schmidt35,107,
  • M. Schmidt106,
  • N. V. Schmidt99,70,
  • A. R. Schmier134,
  • R. Schotter140,
  • J. Schukraft35,
  • K. Schwarz111,
  • K. Schweda111,
  • G. Scioli26,
  • E. Scomparin61,
  • J. E. Seger15,
  • Y. Sekiguchi136,
  • D. Sekihata136,
  • I. Selyuzhenkov111,96,
  • S. Senyukov140,
  • J. J. Seo63,
  • D. Serebryakov65,
  • L. Šerkšnytė108,
  • A. Sevcenco69,
  • T. J. Shaba74,
  • A. Shabanov65,
  • A. Shabetai118,
  • R. Shahoyan35,
  • W. Shaikh113,
  • A. Shangaraev94,
  • A. Sharma103,
  • H. Sharma121,
  • M. Sharma104,
  • N. Sharma103,
  • S. Sharma104,
  • U. Sharma104,
  • O. Sheibani128,
  • K. Shigaki47,
  • M. Shimomura86,
  • S. Shirinkin95,
  • Q. Shou41,
  • Y. Sibiriak91,
  • S. Siddhanta56,
  • T. Siemiarczuk88,
  • T. F. Silva124,
  • D. Silvermyr83,
  • T. Simantathammakul119,
  • G. Simonetti35,
  • B. Singh108,
  • R. Singh89,
  • R. Singh104,
  • R. Singh51,
  • V. K. Singh144,
  • V. Singhal144,
  • T. Sinha113,
  • B. Sitar13,
  • M. Sitta32,
  • T. B. Skaali20,
  • G. Skorodumovs107,
  • M. Slupecki45,
  • N. Smirnov149,
  • R. J. M. Snellings64,
  • C. Soncco115,
  • J. Song128,
  • A. Songmoolnak119,
  • F. Soramel28,
  • S. Sorensen134,
  • I. Sputowska121,
  • J. Stachel107,
  • I. Stan69,
  • P. J. Steffanic134,
  • S. F. Stiefelmaier107,
  • D. Stocco118,
  • I. Storehaug20,
  • M. M. Storetvedt37,
  • P. Stratmann147,
  • C. P. Stylianidis93,
  • A. A. P. Suaide124,
  • T. Sugitate47,
  • C. Suire80,
  • M. Sukhanov65,
  • M. Suljic35,
  • R. Sultanov95,
  • V. Sumberia104,
  • S. Sumowidagdo52,
  • S. Swain67,
  • A. Szabo13,
  • I. Szarka13,
  • U. Tabassam14,
  • S. F. Taghavi108,
  • G. Taillepied138,
  • J. Takahashi125,
  • G. J. Tambave21,
  • S. Tang138,7,
  • Z. Tang132,
  • J. D. Tapia Takaki130,
  • M. Tarhini118,
  • M. G. Tarzila49,
  • A. Tauro35,
  • G. Tejeda Muñoz46,
  • A. Telesca35,
  • L. Terlizzi25,
  • C. Terrevoli128,
  • G. Tersimonov3,
  • S. Thakur144,
  • D. Thomas122,
  • R. Tieulent139,
  • A. Tikhonov65,
  • A. R. Timmins128,
  • M. Tkacik120,
  • A. Toia70,
  • N. Topilskaya65,
  • M. Toppi53,
  • F. Torales-Acosta19,
  • T. Tork80,
  • S. R. Torres38,
  • A. Trifiró33,57,
  • S. Tripathy55,71,
  • T. Tripathy50,
  • S. Trogolo35,28,
  • V. Trubnikov3,
  • W. H. Trzaska129,
  • T. P. Trzcinski145,
  • B. A. Trzeciak38,
  • A. Tumkin112,
  • R. Turrisi58,
  • T. S. Tveter20,
  • K. Ullaland21,
  • A. Uras139,
  • M. Urioni59,143,
  • G. L. Usai23,
  • M. Vala39,
  • N. Valle29,59,
  • S. Vallero61,
  • N. van der Kolk64,
  • L. V. R. van Doremalen64,
  • M. van Leeuwen93,
  • P. Vande Vyvre35,
  • D. Varga148,
  • Z. Varga148,
  • M. Varga-Kofarago148,
  • M. Vasileiou87,
  • A. Vasiliev91,
  • O. Vázquez Doce53,108,
  • V. Vechernin116,
  • E. Vercellin25,
  • S. Vergara Limón46,
  • L. Vermunt64,
  • R. Vértesi148,
  • M. Verweij64,
  • L. Vickovic36,
  • Z. Vilakazi135,
  • O. Villalobos Baillie114,
  • G. Vino54,
  • A. Vinogradov91,
  • T. Virgili30,
  • V. Vislavicius92,
  • A. Vodopyanov77,
  • B. Volkel35,107,
  • M. A. Völkl107,
  • K. Voloshin95,
  • S. A. Voloshin146,
  • G. Volpe34,
  • B. von Haller35,
  • I. Vorobyev108,
  • D. Voscek120,
  • N. Vozniuk65,
  • J. Vrláková39,
  • B. Wagner21,
  • C. Wang41,
  • D. Wang41,
  • M. Weber117,
  • R. J. G. V. Weelden93,
  • A. Wegrzynek35,
  • S. C. Wenzel35,
  • J. P. Wessels147,
  • J. Wiechula70,
  • J. Wikne20,
  • G. Wilk88,
  • J. Wilkinson111,
  • G. A. Willems147,
  • B. Windelband107,
  • M. Winn141,
  • W. E. Witt134,
  • J. R. Wright122,
  • W. Wu41,
  • Y. Wu132,
  • R. Xu7,
  • A. K. Yadav144,
  • S. Yalcin79,
  • Y. Yamaguchi47,
  • K. Yamakawa47,
  • S. Yang21,
  • S. Yano47,
  • Z. Yasin109,
  • Z. Yin7,
  • H. Yokoyama64,
  • I.-K. Yoo17,
  • J. H. Yoon63,
  • S. Yuan21,
  • A. Yuncu107,
  • V. Zaccolo24,
  • C. Zampolli35,
  • H. J. C. Zanoli64,
  • N. Zardoshti35,
  • A. Zarochentsev116,
  • P. Závada68,
  • N. Zaviyalov112,
  • M. Zhalov101,
  • B. Zhang7,
  • S. Zhang41,
  • X. Zhang7,
  • Y. Zhang132,
  • V. Zherebchevskii116,
  • Y. Zhi11,
  • N. Zhigareva95,
  • D. Zhou7,
  • Y. Zhou92,
  • J. Zhu7,111,
  • Y. Zhu7,
  • A. Zichichi26,
  • G. Zinovjev3 &
  • …
  • N. Zurlo143,59 

Journal of High Energy Physics volume 2022, Article number: 106 (2022) Cite this article

  • 653 Accesses

  • 4 Citations

  • 6 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Understanding the production mechanism of light (anti)nuclei is one of the key challenges of nuclear physics and has important consequences for astrophysics, since it provides an input for indirect dark-matter searches in space. In this paper, the latest results about the production of light (anti)nuclei in pp collisions at \( \sqrt{s} \) = 13 TeV are presented, focusing on the comparison with the predictions of coalescence and thermal models. For the first time, the coalescence parameters B2 for deuterons and B3 for helions are compared with parameter-free theoretical predictions that are directly constrained by the femtoscopic measurement of the source radius in the same event class. A fair description of the data with a Gaussian wave function is observed for both deuteron and helion, supporting the coalescence mechanism for the production of light (anti)nuclei in pp collisions. This method paves the way for future investigations of the internal structure of more complex nuclear clusters, including the hypertriton.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. ALICE collaboration, \( {\displaystyle \begin{array}{c}3\\ {}\Lambda \end{array}}\mathrm{H} \) and \( {\displaystyle \begin{array}{c}3\\ {}\overline{\Lambda}\end{array}}\mathrm{H} \) production in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Lett. B 754 (2016) 360 [arXiv:1506.08453] [INSPIRE].

  2. V.T. Cocconi, T. Fazzini, G. Fidecaro, M. Legros, N.H. Lipman and A.W. Merrison, Mass analysis of the secondary particles produced by the 25 GeV proton beam of the CERN proton synchrotron, Phys. Rev. Lett. 5 (1960) 19 [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Nagamiya, Experimental overview, Nucl. Phys. A 544 (1992) 5.

    Article  ADS  Google Scholar 

  4. STAR collaboration, Anti-deuteron and anti-3He production in \( \sqrt{s_{\mathrm{NN}}} \) = 130 GeV Au+Au collisions, Phys. Rev. Lett. 87 (2001) 262301 [Erratum ibid. 87 (2001) 279902] [nucl-ex/0108022] [INSPIRE].

  5. PHENIX collaboration, Deuteron and antideuteron production in Au + Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 200 GeV, Phys. Rev. Lett. 94 (2005) 122302 [nucl-ex/0406004] [INSPIRE].

  6. BRAHMS collaboration, Rapidity dependence of deuteron production in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 200 GeV, Phys. Rev. C 83 (2011) 044906 [arXiv:1005.5427] [INSPIRE].

  7. STAR collaboration, Beam energy dependence of d and \( \overline{d} \) productions in Au+Au collisions at RHIC, Nucl. Phys. A 967 (2017) 788 [arXiv:1704.04335] [INSPIRE].

  8. STAR collaboration, Observation of an antimatter hypernucleus, Science 328 (2010) 58 [arXiv:1003.2030] [INSPIRE].

  9. STAR collaboration, Observation of the antimatter helium-4 nucleus, Nature 473 (2011) 353 [Erratum ibid. 475 (2011) 412] [arXiv:1103.3312] [INSPIRE].

  10. ALICE collaboration, Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. C 93 (2016) 024917 [arXiv:1506.08951] [INSPIRE].

  11. ALICE collaboration, Multiplicity dependence of (anti-)deuteron production in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 794 (2019) 50 [arXiv:1902.09290] [INSPIRE].

  12. ALICE collaboration, Measurement of deuteron spectra and elliptic flow in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV at the LHC, Eur. Phys. J. C 77 (2017) 658 [arXiv:1707.07304] [INSPIRE].

  13. ALICE collaboration, Production of deuterons, tritons, 3He nuclei and their antinuclei in pp collisions at \( \sqrt{s} \) = 0.9, 2.76 and 7 TeV, Phys. Rev. C 97 (2018) 024615 [arXiv:1709.08522] [INSPIRE].

  14. ALICE collaboration, Production of 4He and 4\( \overline{He} \) in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV at the LHC, Nucl. Phys. A 971 (2018) 1 [arXiv:1710.07531] [INSPIRE].

  15. ALICE collaboration, Multiplicity dependence of light (anti-)nuclei production in p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Lett. B 800 (2020) 135043 [arXiv:1906.03136] [INSPIRE].

  16. ALICE collaboration, Production of (anti-)3He and (anti-)3H in p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Rev. C 101 (2020) 044906 [arXiv:1910.14401] [INSPIRE].

  17. ALICE collaboration, (Anti-)deuteron production in pp collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 80 (2020) 889 [arXiv:2003.03184] [INSPIRE].

  18. K. Blum, K.C.Y. Ng, R. Sato and M. Takimoto, Cosmic rays, antihelium, and an old navy spotlight, Phys. Rev. D 96 (2017) 103021 [arXiv:1704.05431] [INSPIRE].

  19. V. Poulin, P. Salati, I. Cholis, M. Kamionkowski and J. Silk, Where do the AMS-02 antihelium events come from?, Phys. Rev. D 99 (2019) 023016 [arXiv:1808.08961] [INSPIRE].

  20. M. Korsmeier, F. Donato and N. Fornengo, Prospects to verify a possible dark matter hint in cosmic antiprotons with antideuterons and antihelium, Phys. Rev. D 97 (2018) 103011 [arXiv:1711.08465] [INSPIRE].

  21. Y. Cui, J.D. Mason and L. Randall, General analysis of antideuteron searches for dark matter, JHEP 11 (2010) 017 [arXiv:1006.0983] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J. Cleymans, S. Kabana, I. Kraus, H. Oeschler, K. Redlich and N. Sharma, Antimatter production in proton-proton and heavy-ion collisions at ultrarelativistic energies, Phys. Rev. C 84 (2011) 054916 [arXiv:1105.3719] [INSPIRE].

  23. A. Andronic, P. Braun-Munzinger, J. Stachel and H. Stocker, Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions, Phys. Lett. B 697 (2011) 203 [arXiv:1010.2995] [INSPIRE].

    Article  ADS  Google Scholar 

  24. F. Becattini, E. Grossi, M. Bleicher, J. Steinheimer and R. Stock, Centrality dependence of hadronization and chemical freeze-out conditions in heavy ion collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Rev. C 90 (2014) 054907 [arXiv:1405.0710] [INSPIRE].

  25. V. Vovchenko and H. Stoecker, Examination of the sensitivity of the thermal fits to heavy-ion hadron yield data to the modeling of the eigenvolume interactions, Phys. Rev. C 95 (2017) 044904 [arXiv:1606.06218] [INSPIRE].

  26. A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Decoding the phase structure of QCD via particle production at high energy, Nature 561 (2018) 321 [arXiv:1710.09425] [INSPIRE].

    Article  ADS  Google Scholar 

  27. N. Sharma, J. Cleymans, B. Hippolyte and M. Paradza, A comparison of p-p, p-Pb, Pb-Pb collisions in the thermal model: multiplicity dependence of thermal parameters, Phys. Rev. C 99 (2019) 044914 [arXiv:1811.00399] [INSPIRE].

  28. V. Vovchenko, B. Dönigus and H. Stoecker, Canonical statistical model analysis of p-p , p-Pb, and Pb-Pb collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. C 100 (2019) 054906 [arXiv:1906.03145] [INSPIRE].

  29. S.T. Butler and C.A. Pearson, Deuterons from high-energy proton bombardment of matter, Phys. Rev. 129 (1963) 836 [INSPIRE].

  30. J.I. Kapusta, Mechanisms for deuteron production in relativistic nuclear collisions, Phys. Rev. C 21 (1980) 1301 [INSPIRE].

  31. W. Zhao, L. Zhu, H. Zheng, C.M. Ko and H. Song, Spectra and flow of light nuclei in relativistic heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider, Phys. Rev. C 98 (2018) 054905 [arXiv:1807.02813] [INSPIRE].

  32. R. Scheibl and U.W. Heinz, Coalescence and flow in ultrarelativistic heavy ion collisions, Phys. Rev. C 59 (1999) 1585 [nucl-th/9809092] [INSPIRE].

  33. K.-J. Sun, C.M. Ko and B. Dönigus, Suppression of light nuclei production in collisions of small systems at the Large Hadron Collider, Phys. Lett. B 792 (2019) 132 [arXiv:1812.05175] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Kachelrieß, S. Ostapchenko and J. Tjemsland, Alternative coalescence model for deuteron, tritium, helium-3 and their antinuclei, Eur. Phys. J. A 56 (2020) 4 [arXiv:1905.01192] [INSPIRE].

    Article  ADS  Google Scholar 

  35. ALICE collaboration, Jet-associated deuteron production in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 819 (2021) 136440 [arXiv:2011.05898] [INSPIRE].

  36. K. Blum and M. Takimoto, Nuclear coalescence from correlation functions, Phys. Rev. C 99 (2019) 044913 [arXiv:1901.07088] [INSPIRE].

  37. ALICE collaboration, Search for a common baryon source in high-multiplicity pp collisions at the LHC, Phys. Lett. B 811 (2020) 135849 [arXiv:2004.08018] [INSPIRE].

  38. ALICE collaboration, The ALICE experiment at the CERN LHC, 2008 JINST 3 S08002 [INSPIRE].

  39. ALICE collaboration, Performance of the ALICE experiment at the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044 [arXiv:1402.4476] [INSPIRE].

  40. ALICE collaboration, Alignment of the ALICE inner tracking system with cosmic-ray tracks, 2010 JINST 5 P03003 [arXiv:1001.0502] [INSPIRE].

  41. J. Alme et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events, Nucl. Instrum. Meth. A 622 (2010) 316 [arXiv:1001.1950] [INSPIRE].

    Article  ADS  Google Scholar 

  42. A. Akindinov et al., Performance of the ALICE time-of-flight detector at the LHC, Eur. Phys. J. Plus 128 (2013) 44 [INSPIRE].

  43. ALICE collaboration, Performance of the ALICE VZERO system, 2013 JINST 8 P10016 [arXiv:1306.3130] [INSPIRE].

  44. ALICE collaboration, Multiplicity dependence of light-flavor hadron production in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. C 99 (2019) 024906 [arXiv:1807.11321] [INSPIRE].

  45. ALICE collaboration, Multiplicity dependence of (multi-)strange hadron production in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 80 (2020) 167 [arXiv:1908.01861] [INSPIRE].

  46. ALICE collaboration, Pseudorapidity density of charged particles in p+Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Rev. Lett. 110 (2013) 032301 [arXiv:1210.3615] [INSPIRE].

  47. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

  48. P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 tune, Eur. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].

  49. GEANT4 collaboration, GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

  50. ALICE collaboration, Measurement of the low-energy antideuteron inelastic cross section, Phys. Rev. Lett. 125 (2020) 162001 [arXiv:2005.11122] [INSPIRE].

  51. R. Brun et al., GEANT: detector description and simulation tool, CERN-W5013, CERN, Geneva, Switzerland (2008).

  52. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Statist. Phys. 52 (1988) 479 [INSPIRE].

  53. E. Schnedermann, J. Sollfrank and U.W. Heinz, Thermal phenomenology of hadrons from 200-A/GeV S+S collisions, Phys. Rev. C 48 (1993) 2462 [nucl-th/9307020] [INSPIRE].

  54. STAR collaboration, Identified particle elliptic flow in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 130 GeV, Phys. Rev. Lett. 87 (2001) 182301 [nucl-ex/0107003] [INSPIRE].

  55. P.J. Siemens and J.O. Rasmussen, Evidence for a blast wave from compress nuclear matter, Phys. Rev. Lett. 42 (1979) 880 [INSPIRE].

  56. F. Bellini, K. Blum, A.P. Kalweit and M. Puccio, Examination of coalescence as the origin of nuclei in hadronic collisions, Phys. Rev. C 103 (2021) 014907 [arXiv:2007.01750] [INSPIRE].

  57. D.R. Entem, R. Machleidt and Y. Nosyk, High-quality two-nucleon potentials up to fifth order of the chiral expansion, Phys. Rev. C 96 (2017) 024004 [arXiv:1703.05454] [INSPIRE].

  58. F. Bellini and A.P. Kalweit, Testing production scenarios for (anti-)(hyper-)nuclei and exotica at energies available at the CERN Large Hadron Collider, Phys. Rev. C 99 (2019) 054905 [arXiv:1807.05894] [INSPIRE].

  59. R.J.N. Phillips, The two-nucleon interaction, Repts. Prog. Phys. 22 (1959) 562.

    Article  ADS  Google Scholar 

  60. E. Tiesinga, P.J. Mohr, D.B. Newell and B.N. Taylor, CODATA recommended values of the fundamental physical constants: 2018, Rev. Mod. Phys. 93 (2021) 025010 [INSPIRE].

  61. V. Vovchenko, B. Dönigus and H. Stoecker, Multiplicity dependence of light nuclei production at LHC energies in the canonical statistical model, Phys. Lett. B 785 (2018) 171 [arXiv:1808.05245] [INSPIRE].

    Article  ADS  Google Scholar 

  62. ALICE collaboration, Future high-energy pp programme with ALICE, ALICE-PUBLIC-2020-005, CERN, Geneva, Switzerland (2020).

  63. ALICE collaboration, Technical design report for the upgrade of the ALICE inner tracking system, J. Phys. G 41 (2014) 087002 [INSPIRE].

  64. ALICE collaboration, Charged kaon femtoscopic correlations in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. D 87 (2013) 052016 [arXiv:1212.5958] [INSPIRE].

  65. R. Machleidt, The high precision, charge dependent Bonn nucleon-nucleon potential (CD-Bonn), Phys. Rev. C 63 (2001) 024001 [nucl-th/0006014] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia

    S. Grigoryan

  2. AGH University of Science and Technology, Cracow, Poland

    B. Balis, M. Gorgon, A. Horzyk, M. Jablonski, J. P. Kitowski, S. D. Koryciak & P. G. Russek

  3. Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine

    G. Tersimonov, V. Trubnikov & G. Zinovjev</