Skip to main content

Supersymmetric spindles

A preprint version of the article is available at arXiv.

Abstract

In the context of holography, we analyse aspects of supersymmetric geometries based on two-dimensional orbifolds known as spindles. By analysing spinc spinors on a spindle with an azimuthal rotation symmetry we show that under rather general conditions there are just two possibilities, called the ‘twist’ and the ‘anti-twist’, which are determined by the quantized magnetic flux through the spindle. A special case of the twist is the standard topological twist which is associated with constant and chiral spinors. We construct solutions of D = 5 and D = 4 STU gauged supergravity theories that are dual to D3-branes and M2-branes wrapping spindles, respectively, which realize both the anti-twist, as seen before, but also the twist. For the wrapped D3-brane solutions we reproduce the central charge of the gravity solution from the dual field theory by analysing the anomaly polynomial of \( \mathcal{N} \) = 4 SYM theory. We also discuss M5-branes wrapped on spindles both from a gravity and a field theory point of view.

References

  1. P. Ferrero, J.P. Gauntlett, J.M. Pérez Ipiña, D. Martelli and J. Sparks, D3-branes wrapped on a spindle, Phys. Rev. Lett. 126 (2021) 111601 [arXiv:2011.10579] [INSPIRE].

  2. F. Faedo and D. Martelli, D4-branes wrapped on a spindle, arXiv:2111.13660 [INSPIRE].

  3. P. Ferrero, J.P. Gauntlett, J.M.P. Ipiña, D. Martelli and J. Sparks, Accelerating black holes and spinning spindles, Phys. Rev. D 104 (2021) 046007 [arXiv:2012.08530] [INSPIRE].

  4. S.M. Hosseini, K. Hristov and A. Zaffaroni, Rotating multi-charge spindles and their microstates, JHEP 07 (2021) 182 [arXiv:2104.11249] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. A. Boido, J.M.P. Ipiña and J. Sparks, Twisted D3-brane and M5-brane compactifications from multi-charge spindles, JHEP 07 (2021) 222 [arXiv:2104.13287] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. P. Ferrero, J.P. Gauntlett, D. Martelli and J. Sparks, M5-branes wrapped on a spindle, JHEP 11 (2021) 002 [arXiv:2105.13344] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. P. Ferrero, M. Inglese, D. Martelli and J. Sparks, Multi-charge accelerating black holes and spinning spindles, arXiv:2109.14625 [INSPIRE].

  8. C. Couzens, K. Stemerdink and D. van de Heisteeg, M2-branes on discs and multi-charged spindles, arXiv:2110.00571 [INSPIRE].

  9. J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, Supersymmetric AdS3 solutions of type IIB supergravity, Phys. Rev. Lett. 97 (2006) 171601 [hep-th/0606221] [INSPIRE].

  10. J.P. Gauntlett, N. Kim and D. Waldram, Supersymmetric AdS3, AdS2 and bubble solutions, JHEP 04 (2007) 005 [hep-th/0612253] [INSPIRE].

  11. J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric field theories on three-manifolds, JHEP 05 (2013) 017 [arXiv:1212.3388] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. I. Bah, F. Bonetti, R. Minasian and E. Nardoni, Holographic duals of Argyres-Douglas theories, Phys. Rev. Lett. 127 (2021) 211601 [arXiv:2105.11567] [INSPIRE].

  14. I. Bah, F. Bonetti, R. Minasian and E. Nardoni, M5-brane sources, holography, and Argyres-Douglas theories, JHEP 11 (2021) 140 [arXiv:2106.01322] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. C. Couzens, N.T. Macpherson and A. Passias, N = (2, 2) AdS3 from D3-branes wrapped on Riemann surfaces, arXiv:2107.13562 [INSPIRE].

  16. M. Suh, D3-branes and M5-branes wrapped on a topological disc, arXiv:2108.01105 [INSPIRE].

  17. J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS5 solutions of M-theory, Class. Quant. Grav. 21 (2004) 4335 [hep-th/0402153] [INSPIRE].

    ADS  Article  Google Scholar 

  18. M. Gabella, D. Martelli, A. Passias and J. Sparks, N = 2 supersymmetric AdS4 solutions of M-theory, Commun. Math. Phys. 325 (2014) 487 [arXiv:1207.3082] [INSPIRE].

    ADS  Article  Google Scholar 

  19. A. Passias and D. Prins, On AdS3 solutions of type IIB, JHEP 05 (2020) 048 [arXiv:1910.06326] [INSPIRE].

    ADS  Article  Google Scholar 

  20. T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring curved superspace, JHEP 08 (2012) 141 [arXiv:1205.1115] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].

    ADS  Article  Google Scholar 

  22. K. Behrndt, A.H. Chamseddine and W.A. Sabra, BPS black holes in N = 2 five-dimensional AdS supergravity, Phys. Lett. B 442 (1998) 97 [hep-th/9807187] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. J.P. Gauntlett and O. Varela, D = 5 SU(2) × U(1) gauged supergravity from D = 11 supergravity, JHEP 02 (2008) 083 [arXiv:0712.3560] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. A. Buchel and J.T. Liu, Gauged supergravity from type IIB string theory on Yp,q manifolds, Nucl. Phys. B 771 (2007) 93 [hep-th/0608002] [INSPIRE].

  28. H.K. Kunduri and J. Lucietti, Near-horizon geometries of supersymmetric AdS5 black holes, JHEP 12 (2007) 015 [arXiv:0708.3695] [INSPIRE].

    ADS  Article  Google Scholar 

  29. A. Donos, J.P. Gauntlett and C. Pantelidou, Magnetic and electric AdS solutions in string- and M-theory, Class. Quant. Grav. 29 (2012) 194006 [arXiv:1112.4195] [INSPIRE].

  30. H. Lü and J.F. Vázquez-Poritz, C-metrics in gauged STU supergravity and beyond, JHEP 12 (2014) 057 [arXiv:1408.6531] [INSPIRE].

    ADS  Article  Google Scholar 

  31. J.T. Liu and R. Minasian, Black holes and membranes in AdS7, Phys. Lett. B 457 (1999) 39 [hep-th/9903269] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. H. Nastase, D. Vaman and P. van Nieuwenhuizen, Consistent nonlinear KK reduction of 11D supergravity on AdS7 × S4 and selfduality in odd dimensions, Phys. Lett. B 469 (1999) 96 [hep-th/9905075] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. J.P. Gauntlett and N. Kim, Geometries with Killing spinors and supersymmetric AdS solutions, Commun. Math. Phys. 284 (2008) 897 [arXiv:0710.2590] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. C. Couzens, J.P. Gauntlett, D. Martelli and J. Sparks, A geometric dual of c-extremization, JHEP 01 (2019) 212 [arXiv:1810.11026] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. J.P. Gauntlett, D. Martelli and J. Sparks, Toric geometry and the dual of c-extremization, JHEP 01 (2019) 204 [arXiv:1812.05597] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. S.M. Hosseini and A. Zaffaroni, Geometry of \( \mathcal{I} \)-extremization and black holes microstates, JHEP 07 (2019) 174 [arXiv:1904.04269] [INSPIRE].

  37. J.P. Gauntlett, D. Martelli and J. Sparks, Toric geometry and the dual of \( \mathcal{I} \)-extremization, JHEP 06 (2019) 140 [arXiv:1904.04282] [INSPIRE].

  38. H. Kim and N. Kim, Black holes with baryonic charge and \( \mathcal{I} \)-extremization, JHEP 11 (2019) 050 [arXiv:1904.05344] [INSPIRE].

  39. J.P. Gauntlett, D. Martelli and J. Sparks, Fibred GK geometry and supersymmetric AdS solutions, JHEP 11 (2019) 176 [arXiv:1910.08078] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. S.L. Cacciatori and D. Klemm, Supersymmetric AdS4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].

    ADS  Article  Google Scholar 

  41. I. Bah, C. Beem, N. Bobev and B. Wecht, Four-dimensional SCFTs from M5-branes, JHEP 06 (2012) 005 [arXiv:1203.0303] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. H. Lü, C.N. Pope and P.K. Townsend, Domain walls from anti-de Sitter space-time, Phys. Lett. B 391 (1997) 39 [hep-th/9607164] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. H. Lü, C.N. Pope and J. Rahmfeld, A construction of Killing spinors on Sn, J. Math. Phys. 40 (1999) 4518 [hep-th/9805151] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Ferrero.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2112.01543

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferrero, P., Gauntlett, J.P. & Sparks, J. Supersymmetric spindles. J. High Energ. Phys. 2022, 102 (2022). https://doi.org/10.1007/JHEP01(2022)102

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2022)102

Keywords

  • AdS-CFT Correspondence
  • Anomalies in Field and String Theories
  • Gauge-gravity correspondence
  • M-Theory