Abstract
We study quantum corrections to hypersurfaces of dimension d + 1 > 2 embedded in generic higher-dimensional spacetimes. Manifest covariance is maintained throughout the analysis and our methods are valid for arbitrary co-dimension and arbitrary bulk metric. A variety of theories which are prominent in the modern amplitude literature arise as special limits: the scalar sector of Dirac-Born-Infeld theories and their multi-field variants, as well as generic non-linear sigma models and extensions thereof. Our explicit one-loop results unite the leading corrections of all such models under a single umbrella. In contrast to naive computations which generate effective actions that appear to violate the non-linear symmetries of their classical counterparts, our efficient methods maintain manifest covariance at all stages and make the symmetry properties of the quantum action clear. We provide an explicit comparison between our compact construction and other approaches and demonstrate the ultimate physical equivalence between the superficially different results.
References
F. Morgan, Colloquium: Soap bubble clusters, Rev. Mod. Phys. 79 (2007) 821 [INSPIRE].
E. Silverstein and D. Tong, Scalar speed limits and cosmology: Acceleration from D-cceleration, Phys. Rev. D 70 (2004) 103505 [hep-th/0310221] [INSPIRE].
M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505 [hep-th/0404084] [INSPIRE].
D. Langlois, S. Renaux-Petel, D.A. Steer and T. Tanaka, Primordial fluctuations and non-Gaussianities in multi-field DBI inflation, Phys. Rev. Lett. 101 (2008) 061301 [arXiv:0804.3139] [INSPIRE].
D. Langlois, S. Renaux-Petel, D.A. Steer and T. Tanaka, Primordial perturbations and non-Gaussianities in DBI and general multi-field inflation, Phys. Rev. D 78 (2008) 063523 [arXiv:0806.0336] [INSPIRE].
J. Polchinski, TASI lectures on D-branes, in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 96): Fields, Strings, and Duality, pp. 293–356, 1996 [hep-th/9611050] [INSPIRE].
J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].
C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective Field Theories from Soft Limits of Scattering Amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].
C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, A Periodic Table of Effective Field Theories, JHEP 02 (2017) 020 [arXiv:1611.03137] [INSPIRE].
H. Elvang, M. Hadjiantonis, C.R.T. Jones and S. Paranjape, Soft Bootstrap and Supersymmetry, JHEP 01 (2019) 195 [arXiv:1806.06079] [INSPIRE].
I. Low and Z. Yin, Soft Bootstrap and Effective Field Theories, JHEP 11 (2019) 078 [arXiv:1904.12859] [INSPIRE].
N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].
F. Cachazo, S. He and E.Y. Yuan, New Double Soft Emission Theorems, Phys. Rev. D 92 (2015) 065030 [arXiv:1503.04816] [INSPIRE].
F. Cachazo, P. Cha and S. Mizera, Extensions of Theories from Soft Limits, JHEP 06 (2016) 170 [arXiv:1604.03893] [INSPIRE].
A. Padilla, D. Stefanyszyn and T. Wilson, Probing Scalar Effective Field Theories with the Soft Limits of Scattering Amplitudes, JHEP 04 (2017) 015 [arXiv:1612.04283] [INSPIRE].
A.L. Guerrieri, Y.-t. Huang, Z. Li and C. Wen, On the exactness of soft theorems, JHEP 12 (2017) 052 [arXiv:1705.10078] [INSPIRE].
Z.-z. Li, H.-h. Lin and S.-q. Zhang, On the Symmetry Foundation of Double Soft Theorems, JHEP 12 (2017) 032 [arXiv:1710.00480] [INSPIRE].
M.P. Bogers and T. Brauner, Geometry of Multiflavor Galileon-Like Theories, Phys. Rev. Lett. 121 (2018) 171602 [arXiv:1802.08107] [INSPIRE].
M.P. Bogers and T. Brauner, Lie-algebraic classification of effective theories with enhanced soft limits, JHEP 05 (2018) 076 [arXiv:1803.05359] [INSPIRE].
L. Rodina, Scattering Amplitudes from Soft Theorems and Infrared Behavior, Phys. Rev. Lett. 122 (2019) 071601 [arXiv:1807.09738] [INSPIRE].
Z. Yin, The Infrared Structure of Exceptional Scalar Theories, JHEP 03 (2019) 158 [arXiv:1810.07186] [INSPIRE].
D. Roest, D. Stefanyszyn and P. Werkman, An Algebraic Classification of Exceptional EFTs, JHEP 08 (2019) 081 [arXiv:1903.08222] [INSPIRE].
J. Bonifacio, K. Hinterbichler, L.A. Johnson, A. Joyce and R.A. Rosen, Matter Couplings and Equivalence Principles for Soft Scalars, JHEP 07 (2020) 056 [arXiv:1911.04490] [INSPIRE].
Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, The Duality Between Color and Kinematics and its Applications, arXiv:1909.01358 [INSPIRE].
F. Cachazo, S. He and E.Y. Yuan, Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].
C. Cheung, C.-H. Shen and C. Wen, Unifying Relations for Scattering Amplitudes, JHEP 02 (2018) 095 [arXiv:1705.03025] [INSPIRE].
I.S. Gerstein, R. Jackiw, S. Weinberg and B.W. Lee, Chiral loops, Phys. Rev. D 3 (1971) 2486 [INSPIRE].
S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations, Cambridge University Press (2005).
S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge University Press (2013).
L.F. Abbott, Introduction to the Background Field Method, Acta Phys. Polon. B 13 (1982) 33.
J. Honerkamp, Chiral multiloops, Nucl. Phys. B 36 (1972) 130 [INSPIRE].
L. Álvarez-Gaumé, D.Z. Freedman and S. Mukhi, The Background Field Method and the Ultraviolet Structure of the Supersymmetric Nonlinear Sigma Model, Annals Phys. 134 (1981) 85 [INSPIRE].
A.O. Bärvinsky and G.A. Vilkovisky, The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity, Phys. Rept. 119 (1985) 1 [INSPIRE].
P. Creminelli and A. Strumia, Collider signals of brane fluctuations, Nucl. Phys. B 596 (2001) 125 [hep-ph/0007267] [INSPIRE].
R. Contino, L. Pilo, R. Rattazzi and A. Strumia, Graviton loops and brane observables, JHEP 06 (2001) 005 [hep-ph/0103104] [INSPIRE].
J.A.R. Cembranos, A. Dobado and A.L. Maroto, Brane world dark matter, Phys. Rev. Lett. 90 (2003) 241301 [hep-ph/0302041] [INSPIRE].
K. Akama and T. Hattori, Brane Induced Gravity in the Curved Bulk, arXiv:1403.5633 [INSPIRE].
V. Forini, V.G.M. Puletti, L. Griguolo, D. Seminara and E. Vescovi, Remarks on the geometrical properties of semiclassically quantized strings, J. Phys. A 48 (2015) 475401 [arXiv:1507.01883] [INSPIRE].
R. de León Ardón, Semiclassical p-branes in hyperbolic space, Class. Quant. Grav. 37 (2020) 237001 [arXiv:2007.03591] [INSPIRE].
N.K. Nielsen, On the Gauge Dependence of Spontaneous Symmetry Breaking in Gauge Theories, Nucl. Phys. B 101 (1975) 173 [INSPIRE].
R. Fukuda and T. Kugo, Gauge Invariance in the Effective Action and Potential, Phys. Rev. D 13 (1976) 3469 [INSPIRE].
I.J.R. Aitchison and C.M. Fraser, Gauge Invariance and the Effective Potential, Annals Phys. 156 (1984) 1 [INSPIRE].
C.F. Hart, Theory and renormalization of the gauge invariant effective action, Phys. Rev. D 28 (1983) 1993 [INSPIRE].
H. Georgi, On-shell effective field theory, Nucl. Phys. B 361 (1991) 339 [INSPIRE].
G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].
A. Andreassen, W. Frost and M.D. Schwartz, Consistent Use of Effective Potentials, Phys. Rev. D 91 (2015) 016009 [arXiv:1408.0287] [INSPIRE].
L. Di Luzio, G. Isidori and G. Ridolfi, Stability of the electroweak ground state in the Standard Model and its extensions, Phys. Lett. B 753 (2016) 150 [arXiv:1509.05028] [INSPIRE].
A. Andreassen, D. Farhi, W. Frost and M.D. Schwartz, Precision decay rate calculations in quantum field theory, Phys. Rev. D 95 (2017) 085011 [arXiv:1604.06090] [INSPIRE].
P.S. Howe, G. Papadopoulos and K.S. Stelle, The background field method and the non-linear σ-model, Nucl. Phys. B 296 (1988) 26 [INSPIRE].
S. Mukhi, The Geometric Background Field Method, Renormalization and the Wess-Zumino Term in Nonlinear Sigma Models, Nucl. Phys. B 264 (1986) 640 [INSPIRE].
P.B. Gilkey, The spectral geometry of a Riemannian manifold, J. Diff. Geom. 10 (1975) 601 [INSPIRE].
I.G. Avramidi, Covariant methods for the calculation of the effective action in quantum field theory and investigation of higher derivative quantum gravity, Ph.D. Thesis, Moscow State University, (1986), [hep-th/9510140] [INSPIRE].
K. Hinterbichler, M. Trodden and D. Wesley, Multi-field galileons and higher co-dimension branes, Phys. Rev. D 82 (2010) 124018 [arXiv:1008.1305] [INSPIRE].
E. Pajer and D. Stefanyszyn, Symmetric Superfluids, JHEP 06 (2019) 008 [arXiv:1812.05133] [INSPIRE].
T. Grall, S. Jazayeri and E. Pajer, Symmetric Scalars, JCAP 05 (2020) 031 [arXiv:1909.04622] [INSPIRE].
C. Cheung, J. Mangan and C.-H. Shen, Hidden Conformal Invariance of Scalar Effective Field Theories, Phys. Rev. D 102 (2020) 125009 [arXiv:2005.13027] [INSPIRE].
G.L. Goon, K. Hinterbichler and M. Trodden, Stability and superluminality of spherical DBI galileon solutions, Phys. Rev. D 83 (2011) 085015 [arXiv:1008.4580] [INSPIRE].
C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [INSPIRE].
G. Goon, K. Hinterbichler and M. Trodden, A New Class of Effective Field Theories from Embedded Branes, Phys. Rev. Lett. 106 (2011) 231102 [arXiv:1103.6029] [INSPIRE].
G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Galileons as Wess-Zumino Terms, JHEP 06 (2012) 004 [arXiv:1203.3191] [INSPIRE].
P. Creminelli, M. Serone, G. Trevisan and E. Trincherini, Inequivalence of Coset Constructions for Spacetime Symmetries, JHEP 02 (2015) 037 [arXiv:1403.3095] [INSPIRE].
C. de Rham and R.H. Ribeiro, Riding on irrelevant operators, JCAP 11 (2014) 016 [arXiv:1405.5213] [INSPIRE].
T. Appelquist and C.W. Bernard, The Nonlinear σ Model in the Loop Expansion, Phys. Rev. D 23 (1981) 425 [INSPIRE].
D.G. Boulware and L.S. Brown, Symmetric space scalar field theory, Annals Phys. 138 (1982) 392 [INSPIRE].
R. Akhoury and Y.-P. Yao, The Nonlinear σ Model as an Effective Lagrangian, Phys. Rev. D 25 (1982) 3361 [INSPIRE].
J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].
M.K. Gaillard, The Effective One Loop Lagrangian With Derivative Couplings, Nucl. Phys. B 268 (1986) 669 [INSPIRE].
K.M. Costa and F. Liebrand, Normal Coordinate Methods and Heavy Higgs Effects, Phys. Rev. D 40 (1989) 2014 [INSPIRE].
R. Alonso, E.E. Jenkins and A.V. Manohar, Geometry of the Scalar Sector, JHEP 08 (2016) 101 [arXiv:1605.03602] [INSPIRE].
J.M. Martín-García, xAct, Efficient tensor computer algebra for the Wolfram Language. http://www.xact.es/.
T. Nutma, xTras: A field-theory inspired xAct package for mathematica, Comput. Phys. Commun. 185 (2014) 1719 [arXiv:1308.3493] [INSPIRE].
S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE].
C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].
I. Low, L. Rodina and Z. Yin, Double Copy in Higher Derivative Operators of Nambu-Goldstone Bosons, Phys. Rev. D 103 (2021) 025004 [arXiv:2009.00008] [INSPIRE].
S. Bellucci, E. Ivanov and S. Krivonos, AdS/CFT equivalence transformation, Phys. Rev. D 66 (2002) 086001 [Erratum ibid. 67 (2003) 049901] [hep-th/0206126] [INSPIRE].
H. Elvang, D.Z. Freedman, L.-Y. Hung, M. Kiermaier, R.C. Myers and S. Theisen, On renormalization group flows and the a-theorem in 6d, JHEP 10 (2012) 011 [arXiv:1205.3994] [INSPIRE].
K. Hinterbichler, A. Joyce, J. Khoury and G.E.J. Miller, DBI Realizations of the Pseudo-Conformal Universe and Galilean Genesis Scenarios, JCAP 12 (2012) 030 [arXiv:1209.5742] [INSPIRE].
P. Di Vecchia, R. Marotta and M. Mojaza, Double-soft behavior of the dilaton of spontaneously broken conformal invariance, JHEP 09 (2017) 001 [arXiv:1705.06175] [INSPIRE].
O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].
C.V. Johnson, D-branes, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2005), [DOI] [INSPIRE].
D. Baumann and L. McAllister, Inflation and String Theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press (5, 2015), [DOI] [arXiv:1404.2601] [INSPIRE].
A. Altland and B. Simons, Condensed matter field theory, Cambridge University Press (2006).
R. Akhoury and A. Alfakih, Invariant background field method for chiral Lagrangians including Wess-Zumino terms, Annals Phys. 210 (1991) 81 [INSPIRE].
T.L. Curtright and C.K. Zachos, Geometry, Topology and Supersymmetry in Nonlinear Models, Phys. Rev. Lett. 53 (1984) 1799 [INSPIRE].
J. Gates, S. J., C.M. Hull and M. Roček, Twisted Multiplets and New Supersymmetric Nonlinear Sigma Models, Nucl. Phys. B 248 (1984) 157 [INSPIRE].
M. Shmakova, One loop corrections to the D3-brane action, Phys. Rev. D 62 (2000) 104009 [hep-th/9906239] [INSPIRE].
C. Wen and S.-Q. Zhang, D3-Brane Loop Amplitudes from M5-Brane Tree Amplitudes, JHEP 07 (2020) 098 [arXiv:2004.02735] [INSPIRE].
H. Elvang, M. Hadjiantonis, C.R.T. Jones and S. Paranjape, Electromagnetic Duality and D3-Brane Scattering Amplitudes Beyond Leading Order, arXiv:2006.08928 [INSPIRE].
R. Klein, E. Malek, D. Roest and D. Stefanyszyn, No-go theorem for a gauge vector as a spacetime Goldstone mode, Phys. Rev. D 98 (2018) 065001 [arXiv:1806.06862] [INSPIRE].
C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, J. Trnka and C. Wen, Vector Effective Field Theories from Soft Limits, Phys. Rev. Lett. 120 (2018) 261602 [arXiv:1801.01496] [INSPIRE].
J. Novotny, Geometry of special Galileons, Phys. Rev. D 95 (2017) 065019 [arXiv:1612.01738] [INSPIRE].
F. Přeučil and J. Novotný, Special Galileon at one loop, JHEP 11 (2019) 166 [arXiv:1909.06214] [INSPIRE].
E. Poisson, A. Pound and I. Vega, The motion of point particles in curved spacetime, Living Rev. Rel. 14 (2011) 7 [arXiv:1102.0529] [INSPIRE].
B.S. DeWitt and R. Stora, eds., Relativity, groups and topology: Proceedings, 40th Summer School of Theoretical Physics — Session 40: Les Houches, France, June 27 – August 4, 1983, vol. 2, North-holland, Amsterdam, The Netherlands (1984).
L.S. Brown, Stress Tensor Trace Anomaly in a Gravitational Metric: Scalar Fields, Phys. Rev. D 15 (1977) 1469 [INSPIRE].
L.S. Brown and J.P. Cassidy, Stress Tensor Trace Anomaly in a Gravitational Metric: General Theory, Maxwell Field, Phys. Rev. D 15 (1977) 2810 [INSPIRE].
K. Hinterbichler and A. Joyce, Hidden symmetry of the Galileon, Phys. Rev. D 92 (2015) 023503 [arXiv:1501.07600] [INSPIRE].
C. de Rham, M. Fasiello and A.J. Tolley, Galileon Duality, Phys. Lett. B 733 (2014) 46 [arXiv:1308.2702] [INSPIRE].
C. De Rham, L. Keltner and A.J. Tolley, Generalized galileon duality, Phys. Rev. D 90 (2014) 024050 [arXiv:1403.3690] [INSPIRE].
K. Kampf and J. Novotny, Unification of Galileon Dualities, JHEP 10 (2014) 006 [arXiv:1403.6813] [INSPIRE].
J. Noller and J.H.C. Scargill, The decoupling limit of Multi-Gravity: Multi-Galileons, Dualities and More, JHEP 05 (2015) 034 [arXiv:1503.02700] [INSPIRE].
L. Heisenberg and C.F. Steinwachs, Geometrized quantum Galileons, JCAP 02 (2020) 031 [arXiv:1909.07111] [INSPIRE].
L. Heisenberg, J. Noller and J. Zosso, Horndeski under the quantum loupe, JCAP 10 (2020) 010 [arXiv:2004.11655] [INSPIRE].
D. Roest, The Special Galileon as Goldstone of Diffeomorphisms, arXiv:2004.09559 [INSPIRE].
A.O. Bärvinsky and G.A. Vilkovisky, The generalized Schwinger-De Witt technique and the unique effective action in quantum gravity, Phys. Lett. B 131 (1983) 313 [INSPIRE].
A.O. Bärvinsky and G.A. Vilkovisky, Covariant perturbation theory. 2: Second order in the curvature. General algorithms, Nucl. Phys. B 333 (1990) 471 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2010.05913
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Goon, G., Melville, S. & Noller, J. Quantum corrections to generic branes: DBI, NLSM, and more. J. High Energ. Phys. 2021, 159 (2021). https://doi.org/10.1007/JHEP01(2021)159
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2021)159
Keywords
- Effective Field Theories
- Global Symmetries
- Renormalization Regularization and Renormalons
- Space-Time Symmetries