F. Morgan, Colloquium: Soap bubble clusters, Rev. Mod. Phys. 79 (2007) 821 [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
E. Silverstein and D. Tong, Scalar speed limits and cosmology: Acceleration from D-cceleration, Phys. Rev. D 70 (2004) 103505 [hep-th/0310221] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505 [hep-th/0404084] [INSPIRE].
ADS
Google Scholar
D. Langlois, S. Renaux-Petel, D.A. Steer and T. Tanaka, Primordial fluctuations and non-Gaussianities in multi-field DBI inflation, Phys. Rev. Lett. 101 (2008) 061301 [arXiv:0804.3139] [INSPIRE].
ADS
Google Scholar
D. Langlois, S. Renaux-Petel, D.A. Steer and T. Tanaka, Primordial perturbations and non-Gaussianities in DBI and general multi-field inflation, Phys. Rev. D 78 (2008) 063523 [arXiv:0806.0336] [INSPIRE].
ADS
Google Scholar
J. Polchinski, TASI lectures on D-branes, in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 96): Fields, Strings, and Duality, pp. 293–356, 1996 [hep-th/9611050] [INSPIRE].
J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].
MathSciNet
MATH
Google Scholar
C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective Field Theories from Soft Limits of Scattering Amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].
ADS
Google Scholar
C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, A Periodic Table of Effective Field Theories, JHEP 02 (2017) 020 [arXiv:1611.03137] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
H. Elvang, M. Hadjiantonis, C.R.T. Jones and S. Paranjape, Soft Bootstrap and Supersymmetry, JHEP 01 (2019) 195 [arXiv:1806.06079] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
I. Low and Z. Yin, Soft Bootstrap and Effective Field Theories, JHEP 11 (2019) 078 [arXiv:1904.12859] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
F. Cachazo, S. He and E.Y. Yuan, New Double Soft Emission Theorems, Phys. Rev. D 92 (2015) 065030 [arXiv:1503.04816] [INSPIRE].
ADS
MathSciNet
Google Scholar
F. Cachazo, P. Cha and S. Mizera, Extensions of Theories from Soft Limits, JHEP 06 (2016) 170 [arXiv:1604.03893] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
A. Padilla, D. Stefanyszyn and T. Wilson, Probing Scalar Effective Field Theories with the Soft Limits of Scattering Amplitudes, JHEP 04 (2017) 015 [arXiv:1612.04283] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
A.L. Guerrieri, Y.-t. Huang, Z. Li and C. Wen, On the exactness of soft theorems, JHEP 12 (2017) 052 [arXiv:1705.10078] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
Z.-z. Li, H.-h. Lin and S.-q. Zhang, On the Symmetry Foundation of Double Soft Theorems, JHEP 12 (2017) 032 [arXiv:1710.00480] [INSPIRE].
ADS
MathSciNet
Google Scholar
M.P. Bogers and T. Brauner, Geometry of Multiflavor Galileon-Like Theories, Phys. Rev. Lett. 121 (2018) 171602 [arXiv:1802.08107] [INSPIRE].
ADS
Google Scholar
M.P. Bogers and T. Brauner, Lie-algebraic classification of effective theories with enhanced soft limits, JHEP 05 (2018) 076 [arXiv:1803.05359] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
L. Rodina, Scattering Amplitudes from Soft Theorems and Infrared Behavior, Phys. Rev. Lett. 122 (2019) 071601 [arXiv:1807.09738] [INSPIRE].
ADS
Google Scholar
Z. Yin, The Infrared Structure of Exceptional Scalar Theories, JHEP 03 (2019) 158 [arXiv:1810.07186] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
D. Roest, D. Stefanyszyn and P. Werkman, An Algebraic Classification of Exceptional EFTs, JHEP 08 (2019) 081 [arXiv:1903.08222] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
J. Bonifacio, K. Hinterbichler, L.A. Johnson, A. Joyce and R.A. Rosen, Matter Couplings and Equivalence Principles for Soft Scalars, JHEP 07 (2020) 056 [arXiv:1911.04490] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, The Duality Between Color and Kinematics and its Applications, arXiv:1909.01358 [INSPIRE].
F. Cachazo, S. He and E.Y. Yuan, Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
C. Cheung, C.-H. Shen and C. Wen, Unifying Relations for Scattering Amplitudes, JHEP 02 (2018) 095 [arXiv:1705.03025] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
I.S. Gerstein, R. Jackiw, S. Weinberg and B.W. Lee, Chiral loops, Phys. Rev. D 3 (1971) 2486 [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations, Cambridge University Press (2005).
S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge University Press (2013).
L.F. Abbott, Introduction to the Background Field Method, Acta Phys. Polon. B 13 (1982) 33.
MathSciNet
Google Scholar
J. Honerkamp, Chiral multiloops, Nucl. Phys. B 36 (1972) 130 [INSPIRE].
ADS
Google Scholar
L. Álvarez-Gaumé, D.Z. Freedman and S. Mukhi, The Background Field Method and the Ultraviolet Structure of the Supersymmetric Nonlinear Sigma Model, Annals Phys. 134 (1981) 85 [INSPIRE].
ADS
Google Scholar
A.O. Bärvinsky and G.A. Vilkovisky, The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity, Phys. Rept. 119 (1985) 1 [INSPIRE].
ADS
MathSciNet
Google Scholar
P. Creminelli and A. Strumia, Collider signals of brane fluctuations, Nucl. Phys. B 596 (2001) 125 [hep-ph/0007267] [INSPIRE].
R. Contino, L. Pilo, R. Rattazzi and A. Strumia, Graviton loops and brane observables, JHEP 06 (2001) 005 [hep-ph/0103104] [INSPIRE].
J.A.R. Cembranos, A. Dobado and A.L. Maroto, Brane world dark matter, Phys. Rev. Lett. 90 (2003) 241301 [hep-ph/0302041] [INSPIRE].
K. Akama and T. Hattori, Brane Induced Gravity in the Curved Bulk, arXiv:1403.5633 [INSPIRE].
V. Forini, V.G.M. Puletti, L. Griguolo, D. Seminara and E. Vescovi, Remarks on the geometrical properties of semiclassically quantized strings, J. Phys. A 48 (2015) 475401 [arXiv:1507.01883] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
R. de León Ardón, Semiclassical p-branes in hyperbolic space, Class. Quant. Grav. 37 (2020) 237001 [arXiv:2007.03591] [INSPIRE].
ADS
MathSciNet
Google Scholar
N.K. Nielsen, On the Gauge Dependence of Spontaneous Symmetry Breaking in Gauge Theories, Nucl. Phys. B 101 (1975) 173 [INSPIRE].
ADS
Google Scholar
R. Fukuda and T. Kugo, Gauge Invariance in the Effective Action and Potential, Phys. Rev. D 13 (1976) 3469 [INSPIRE].
ADS
Google Scholar
I.J.R. Aitchison and C.M. Fraser, Gauge Invariance and the Effective Potential, Annals Phys. 156 (1984) 1 [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
C.F. Hart, Theory and renormalization of the gauge invariant effective action, Phys. Rev. D 28 (1983) 1993 [INSPIRE].
ADS
MathSciNet
Google Scholar
H. Georgi, On-shell effective field theory, Nucl. Phys. B 361 (1991) 339 [INSPIRE].
ADS
Google Scholar
G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].
A. Andreassen, W. Frost and M.D. Schwartz, Consistent Use of Effective Potentials, Phys. Rev. D 91 (2015) 016009 [arXiv:1408.0287] [INSPIRE].
ADS
Google Scholar
L. Di Luzio, G. Isidori and G. Ridolfi, Stability of the electroweak ground state in the Standard Model and its extensions, Phys. Lett. B 753 (2016) 150 [arXiv:1509.05028] [INSPIRE].
ADS
Google Scholar
A. Andreassen, D. Farhi, W. Frost and M.D. Schwartz, Precision decay rate calculations in quantum field theory, Phys. Rev. D 95 (2017) 085011 [arXiv:1604.06090] [INSPIRE].
ADS
MathSciNet
Google Scholar
P.S. Howe, G. Papadopoulos and K.S. Stelle, The background field method and the non-linear σ-model, Nucl. Phys. B 296 (1988) 26 [INSPIRE].
ADS
Google Scholar
S. Mukhi, The Geometric Background Field Method, Renormalization and the Wess-Zumino Term in Nonlinear Sigma Models, Nucl. Phys. B 264 (1986) 640 [INSPIRE].
ADS
Google Scholar
P.B. Gilkey, The spectral geometry of a Riemannian manifold, J. Diff. Geom. 10 (1975) 601 [INSPIRE].
MathSciNet
MATH
Google Scholar
I.G. Avramidi, Covariant methods for the calculation of the effective action in quantum field theory and investigation of higher derivative quantum gravity, Ph.D. Thesis, Moscow State University, (1986), [hep-th/9510140] [INSPIRE].
K. Hinterbichler, M. Trodden and D. Wesley, Multi-field galileons and higher co-dimension branes, Phys. Rev. D 82 (2010) 124018 [arXiv:1008.1305] [INSPIRE].
ADS
Google Scholar
E. Pajer and D. Stefanyszyn, Symmetric Superfluids, JHEP 06 (2019) 008 [arXiv:1812.05133] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
T. Grall, S. Jazayeri and E. Pajer, Symmetric Scalars, JCAP 05 (2020) 031 [arXiv:1909.04622] [INSPIRE].
ADS
MathSciNet
Google Scholar
C. Cheung, J. Mangan and C.-H. Shen, Hidden Conformal Invariance of Scalar Effective Field Theories, Phys. Rev. D 102 (2020) 125009 [arXiv:2005.13027] [INSPIRE].
ADS
MathSciNet
Google Scholar
G.L. Goon, K. Hinterbichler and M. Trodden, Stability and superluminality of spherical DBI galileon solutions, Phys. Rev. D 83 (2011) 085015 [arXiv:1008.4580] [INSPIRE].
ADS
Google Scholar
C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [INSPIRE].
Google Scholar
G. Goon, K. Hinterbichler and M. Trodden, A New Class of Effective Field Theories from Embedded Branes, Phys. Rev. Lett. 106 (2011) 231102 [arXiv:1103.6029] [INSPIRE].
ADS
Google Scholar
G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Galileons as Wess-Zumino Terms, JHEP 06 (2012) 004 [arXiv:1203.3191] [INSPIRE].
ADS
Google Scholar
P. Creminelli, M. Serone, G. Trevisan and E. Trincherini, Inequivalence of Coset Constructions for Spacetime Symmetries, JHEP 02 (2015) 037 [arXiv:1403.3095] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
C. de Rham and R.H. Ribeiro, Riding on irrelevant operators, JCAP 11 (2014) 016 [arXiv:1405.5213] [INSPIRE].
MathSciNet
Google Scholar
T. Appelquist and C.W. Bernard, The Nonlinear σ Model in the Loop Expansion, Phys. Rev. D 23 (1981) 425 [INSPIRE].
ADS
Google Scholar
D.G. Boulware and L.S. Brown, Symmetric space scalar field theory, Annals Phys. 138 (1982) 392 [INSPIRE].
ADS
MathSciNet
Google Scholar
R. Akhoury and Y.-P. Yao, The Nonlinear σ Model as an Effective Lagrangian, Phys. Rev. D 25 (1982) 3361 [INSPIRE].
ADS
Google Scholar
J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].
ADS
MathSciNet
Google Scholar
M.K. Gaillard, The Effective One Loop Lagrangian With Derivative Couplings, Nucl. Phys. B 268 (1986) 669 [INSPIRE].
ADS
MathSciNet
Google Scholar
K.M. Costa and F. Liebrand, Normal Coordinate Methods and Heavy Higgs Effects, Phys. Rev. D 40 (1989) 2014 [INSPIRE].
ADS
Google Scholar
R. Alonso, E.E. Jenkins and A.V. Manohar, Geometry of the Scalar Sector, JHEP 08 (2016) 101 [arXiv:1605.03602] [INSPIRE].
ADS
MathSciNet
Google Scholar
J.M. Martín-García, xAct, Efficient tensor computer algebra for the Wolfram Language. http://www.xact.es/.
T. Nutma, xTras: A field-theory inspired xAct package for mathematica, Comput. Phys. Commun. 185 (2014) 1719 [arXiv:1308.3493] [INSPIRE].
ADS
MATH
Google Scholar
S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE].
C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].
I. Low, L. Rodina and Z. Yin, Double Copy in Higher Derivative Operators of Nambu-Goldstone Bosons, Phys. Rev. D 103 (2021) 025004 [arXiv:2009.00008] [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Bellucci, E. Ivanov and S. Krivonos, AdS/CFT equivalence transformation, Phys. Rev. D 66 (2002) 086001 [Erratum ibid. 67 (2003) 049901] [hep-th/0206126] [INSPIRE].
H. Elvang, D.Z. Freedman, L.-Y. Hung, M. Kiermaier, R.C. Myers and S. Theisen, On renormalization group flows and the a-theorem in 6d, JHEP 10 (2012) 011 [arXiv:1205.3994] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
K. Hinterbichler, A. Joyce, J. Khoury and G.E.J. Miller, DBI Realizations of the Pseudo-Conformal Universe and Galilean Genesis Scenarios, JCAP 12 (2012) 030 [arXiv:1209.5742] [INSPIRE].
ADS
MathSciNet
Google Scholar
P. Di Vecchia, R. Marotta and M. Mojaza, Double-soft behavior of the dilaton of spontaneously broken conformal invariance, JHEP 09 (2017) 001 [arXiv:1705.06175] [INSPIRE].
MathSciNet
MATH
Google Scholar
O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
C.V. Johnson, D-branes, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2005), [DOI] [INSPIRE].
D. Baumann and L. McAllister, Inflation and String Theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press (5, 2015), [DOI] [arXiv:1404.2601] [INSPIRE].
A. Altland and B. Simons, Condensed matter field theory, Cambridge University Press (2006).
R. Akhoury and A. Alfakih, Invariant background field method for chiral Lagrangians including Wess-Zumino terms, Annals Phys. 210 (1991) 81 [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
T.L. Curtright and C.K. Zachos, Geometry, Topology and Supersymmetry in Nonlinear Models, Phys. Rev. Lett. 53 (1984) 1799 [INSPIRE].
ADS
MathSciNet
Google Scholar
J. Gates, S. J., C.M. Hull and M. Roček, Twisted Multiplets and New Supersymmetric Nonlinear Sigma Models, Nucl. Phys. B 248 (1984) 157 [INSPIRE].
M. Shmakova, One loop corrections to the D3-brane action, Phys. Rev. D 62 (2000) 104009 [hep-th/9906239] [INSPIRE].
ADS
MathSciNet
Google Scholar
C. Wen and S.-Q. Zhang, D3-Brane Loop Amplitudes from M5-Brane Tree Amplitudes, JHEP 07 (2020) 098 [arXiv:2004.02735] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
H. Elvang, M. Hadjiantonis, C.R.T. Jones and S. Paranjape, Electromagnetic Duality and D3-Brane Scattering Amplitudes Beyond Leading Order, arXiv:2006.08928 [INSPIRE].
R. Klein, E. Malek, D. Roest and D. Stefanyszyn, No-go theorem for a gauge vector as a spacetime Goldstone mode, Phys. Rev. D 98 (2018) 065001 [arXiv:1806.06862] [INSPIRE].
ADS
MathSciNet
Google Scholar
C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, J. Trnka and C. Wen, Vector Effective Field Theories from Soft Limits, Phys. Rev. Lett. 120 (2018) 261602 [arXiv:1801.01496] [INSPIRE].
ADS
Google Scholar
J. Novotny, Geometry of special Galileons, Phys. Rev. D 95 (2017) 065019 [arXiv:1612.01738] [INSPIRE].
ADS
MathSciNet
Google Scholar
F. Přeučil and J. Novotný, Special Galileon at one loop, JHEP 11 (2019) 166 [arXiv:1909.06214] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
E. Poisson, A. Pound and I. Vega, The motion of point particles in curved spacetime, Living Rev. Rel. 14 (2011) 7 [arXiv:1102.0529] [INSPIRE].
MATH
Google Scholar
B.S. DeWitt and R. Stora, eds., Relativity, groups and topology: Proceedings, 40th Summer School of Theoretical Physics — Session 40: Les Houches, France, June 27 – August 4, 1983, vol. 2, North-holland, Amsterdam, The Netherlands (1984).
Google Scholar
L.S. Brown, Stress Tensor Trace Anomaly in a Gravitational Metric: Scalar Fields, Phys. Rev. D 15 (1977) 1469 [INSPIRE].
ADS
Google Scholar
L.S. Brown and J.P. Cassidy, Stress Tensor Trace Anomaly in a Gravitational Metric: General Theory, Maxwell Field, Phys. Rev. D 15 (1977) 2810 [INSPIRE].
ADS
Google Scholar
K. Hinterbichler and A. Joyce, Hidden symmetry of the Galileon, Phys. Rev. D 92 (2015) 023503 [arXiv:1501.07600] [INSPIRE].
ADS
MathSciNet
Google Scholar
C. de Rham, M. Fasiello and A.J. Tolley, Galileon Duality, Phys. Lett. B 733 (2014) 46 [arXiv:1308.2702] [INSPIRE].
ADS
MATH
Google Scholar
C. De Rham, L. Keltner and A.J. Tolley, Generalized galileon duality, Phys. Rev. D 90 (2014) 024050 [arXiv:1403.3690] [INSPIRE].
ADS
Google Scholar
K. Kampf and J. Novotny, Unification of Galileon Dualities, JHEP 10 (2014) 006 [arXiv:1403.6813] [INSPIRE].
ADS
Google Scholar
J. Noller and J.H.C. Scargill, The decoupling limit of Multi-Gravity: Multi-Galileons, Dualities and More, JHEP 05 (2015) 034 [arXiv:1503.02700] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
L. Heisenberg and C.F. Steinwachs, Geometrized quantum Galileons, JCAP 02 (2020) 031 [arXiv:1909.07111] [INSPIRE].
ADS
MathSciNet
Google Scholar
L. Heisenberg, J. Noller and J. Zosso, Horndeski under the quantum loupe, JCAP 10 (2020) 010 [arXiv:2004.11655] [INSPIRE].
ADS
MathSciNet
Google Scholar
D. Roest, The Special Galileon as Goldstone of Diffeomorphisms, arXiv:2004.09559 [INSPIRE].
A.O. Bärvinsky and G.A. Vilkovisky, The generalized Schwinger-De Witt technique and the unique effective action in quantum gravity, Phys. Lett. B 131 (1983) 313 [INSPIRE].
ADS
Google Scholar
A.O. Bärvinsky and G.A. Vilkovisky, Covariant perturbation theory. 2: Second order in the curvature. General algorithms, Nucl. Phys. B 333 (1990) 471 [INSPIRE].