Skip to main content

Quantum corrections to generic branes: DBI, NLSM, and more

A preprint version of the article is available at arXiv.

Abstract

We study quantum corrections to hypersurfaces of dimension d + 1 > 2 embedded in generic higher-dimensional spacetimes. Manifest covariance is maintained throughout the analysis and our methods are valid for arbitrary co-dimension and arbitrary bulk metric. A variety of theories which are prominent in the modern amplitude literature arise as special limits: the scalar sector of Dirac-Born-Infeld theories and their multi-field variants, as well as generic non-linear sigma models and extensions thereof. Our explicit one-loop results unite the leading corrections of all such models under a single umbrella. In contrast to naive computations which generate effective actions that appear to violate the non-linear symmetries of their classical counterparts, our efficient methods maintain manifest covariance at all stages and make the symmetry properties of the quantum action clear. We provide an explicit comparison between our compact construction and other approaches and demonstrate the ultimate physical equivalence between the superficially different results.

References

  1. F. Morgan, Colloquium: Soap bubble clusters, Rev. Mod. Phys. 79 (2007) 821 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  2. E. Silverstein and D. Tong, Scalar speed limits and cosmology: Acceleration from D-cceleration, Phys. Rev. D 70 (2004) 103505 [hep-th/0310221] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  3. M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505 [hep-th/0404084] [INSPIRE].

    ADS  Google Scholar 

  4. D. Langlois, S. Renaux-Petel, D.A. Steer and T. Tanaka, Primordial fluctuations and non-Gaussianities in multi-field DBI inflation, Phys. Rev. Lett. 101 (2008) 061301 [arXiv:0804.3139] [INSPIRE].

    ADS  Google Scholar 

  5. D. Langlois, S. Renaux-Petel, D.A. Steer and T. Tanaka, Primordial perturbations and non-Gaussianities in DBI and general multi-field inflation, Phys. Rev. D 78 (2008) 063523 [arXiv:0806.0336] [INSPIRE].

    ADS  Google Scholar 

  6. J. Polchinski, TASI lectures on D-branes, in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 96): Fields, Strings, and Duality, pp. 293–356, 1996 [hep-th/9611050] [INSPIRE].

  7. J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  8. C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective Field Theories from Soft Limits of Scattering Amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].

    ADS  Google Scholar 

  9. C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, A Periodic Table of Effective Field Theories, JHEP 02 (2017) 020 [arXiv:1611.03137] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  10. H. Elvang, M. Hadjiantonis, C.R.T. Jones and S. Paranjape, Soft Bootstrap and Supersymmetry, JHEP 01 (2019) 195 [arXiv:1806.06079] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  11. I. Low and Z. Yin, Soft Bootstrap and Effective Field Theories, JHEP 11 (2019) 078 [arXiv:1904.12859] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  12. N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  13. F. Cachazo, S. He and E.Y. Yuan, New Double Soft Emission Theorems, Phys. Rev. D 92 (2015) 065030 [arXiv:1503.04816] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  14. F. Cachazo, P. Cha and S. Mizera, Extensions of Theories from Soft Limits, JHEP 06 (2016) 170 [arXiv:1604.03893] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  15. A. Padilla, D. Stefanyszyn and T. Wilson, Probing Scalar Effective Field Theories with the Soft Limits of Scattering Amplitudes, JHEP 04 (2017) 015 [arXiv:1612.04283] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  16. A.L. Guerrieri, Y.-t. Huang, Z. Li and C. Wen, On the exactness of soft theorems, JHEP 12 (2017) 052 [arXiv:1705.10078] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  17. Z.-z. Li, H.-h. Lin and S.-q. Zhang, On the Symmetry Foundation of Double Soft Theorems, JHEP 12 (2017) 032 [arXiv:1710.00480] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. M.P. Bogers and T. Brauner, Geometry of Multiflavor Galileon-Like Theories, Phys. Rev. Lett. 121 (2018) 171602 [arXiv:1802.08107] [INSPIRE].

    ADS  Google Scholar 

  19. M.P. Bogers and T. Brauner, Lie-algebraic classification of effective theories with enhanced soft limits, JHEP 05 (2018) 076 [arXiv:1803.05359] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  20. L. Rodina, Scattering Amplitudes from Soft Theorems and Infrared Behavior, Phys. Rev. Lett. 122 (2019) 071601 [arXiv:1807.09738] [INSPIRE].

    ADS  Google Scholar 

  21. Z. Yin, The Infrared Structure of Exceptional Scalar Theories, JHEP 03 (2019) 158 [arXiv:1810.07186] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  22. D. Roest, D. Stefanyszyn and P. Werkman, An Algebraic Classification of Exceptional EFTs, JHEP 08 (2019) 081 [arXiv:1903.08222] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  23. J. Bonifacio, K. Hinterbichler, L.A. Johnson, A. Joyce and R.A. Rosen, Matter Couplings and Equivalence Principles for Soft Scalars, JHEP 07 (2020) 056 [arXiv:1911.04490] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  24. Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, The Duality Between Color and Kinematics and its Applications, arXiv:1909.01358 [INSPIRE].

  25. F. Cachazo, S. He and E.Y. Yuan, Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  26. C. Cheung, C.-H. Shen and C. Wen, Unifying Relations for Scattering Amplitudes, JHEP 02 (2018) 095 [arXiv:1705.03025] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  27. I.S. Gerstein, R. Jackiw, S. Weinberg and B.W. Lee, Chiral loops, Phys. Rev. D 3 (1971) 2486 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  28. S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations, Cambridge University Press (2005).

  29. S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge University Press (2013).

  30. L.F. Abbott, Introduction to the Background Field Method, Acta Phys. Polon. B 13 (1982) 33.

    MathSciNet  Google Scholar 

  31. J. Honerkamp, Chiral multiloops, Nucl. Phys. B 36 (1972) 130 [INSPIRE].

    ADS  Google Scholar 

  32. L. Álvarez-Gaumé, D.Z. Freedman and S. Mukhi, The Background Field Method and the Ultraviolet Structure of the Supersymmetric Nonlinear Sigma Model, Annals Phys. 134 (1981) 85 [INSPIRE].

    ADS  Google Scholar 

  33. A.O. Bärvinsky and G.A. Vilkovisky, The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity, Phys. Rept. 119 (1985) 1 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  34. P. Creminelli and A. Strumia, Collider signals of brane fluctuations, Nucl. Phys. B 596 (2001) 125 [hep-ph/0007267] [INSPIRE].

  35. R. Contino, L. Pilo, R. Rattazzi and A. Strumia, Graviton loops and brane observables, JHEP 06 (2001) 005 [hep-ph/0103104] [INSPIRE].

  36. J.A.R. Cembranos, A. Dobado and A.L. Maroto, Brane world dark matter, Phys. Rev. Lett. 90 (2003) 241301 [hep-ph/0302041] [INSPIRE].

  37. K. Akama and T. Hattori, Brane Induced Gravity in the Curved Bulk, arXiv:1403.5633 [INSPIRE].

  38. V. Forini, V.G.M. Puletti, L. Griguolo, D. Seminara and E. Vescovi, Remarks on the geometrical properties of semiclassically quantized strings, J. Phys. A 48 (2015) 475401 [arXiv:1507.01883] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  39. R. de León Ardón, Semiclassical p-branes in hyperbolic space, Class. Quant. Grav. 37 (2020) 237001 [arXiv:2007.03591] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  40. N.K. Nielsen, On the Gauge Dependence of Spontaneous Symmetry Breaking in Gauge Theories, Nucl. Phys. B 101 (1975) 173 [INSPIRE].

    ADS  Google Scholar 

  41. R. Fukuda and T. Kugo, Gauge Invariance in the Effective Action and Potential, Phys. Rev. D 13 (1976) 3469 [INSPIRE].

    ADS  Google Scholar 

  42. I.J.R. Aitchison and C.M. Fraser, Gauge Invariance and the Effective Potential, Annals Phys. 156 (1984) 1 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  43. C.F. Hart, Theory and renormalization of the gauge invariant effective action, Phys. Rev. D 28 (1983) 1993 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  44. H. Georgi, On-shell effective field theory, Nucl. Phys. B 361 (1991) 339 [INSPIRE].

    ADS  Google Scholar 

  45. G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].

  46. A. Andreassen, W. Frost and M.D. Schwartz, Consistent Use of Effective Potentials, Phys. Rev. D 91 (2015) 016009 [arXiv:1408.0287] [INSPIRE].

    ADS  Google Scholar 

  47. L. Di Luzio, G. Isidori and G. Ridolfi, Stability of the electroweak ground state in the Standard Model and its extensions, Phys. Lett. B 753 (2016) 150 [arXiv:1509.05028] [INSPIRE].

    ADS  Google Scholar 

  48. A. Andreassen, D. Farhi, W. Frost and M.D. Schwartz, Precision decay rate calculations in quantum field theory, Phys. Rev. D 95 (2017) 085011 [arXiv:1604.06090] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  49. P.S. Howe, G. Papadopoulos and K.S. Stelle, The background field method and the non-linear σ-model, Nucl. Phys. B 296 (1988) 26 [INSPIRE].

    ADS  Google Scholar 

  50. S. Mukhi, The Geometric Background Field Method, Renormalization and the Wess-Zumino Term in Nonlinear Sigma Models, Nucl. Phys. B 264 (1986) 640 [INSPIRE].

    ADS  Google Scholar 

  51. P.B. Gilkey, The spectral geometry of a Riemannian manifold, J. Diff. Geom. 10 (1975) 601 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  52. I.G. Avramidi, Covariant methods for the calculation of the effective action in quantum field theory and investigation of higher derivative quantum gravity, Ph.D. Thesis, Moscow State University, (1986), [hep-th/9510140] [INSPIRE].

  53. K. Hinterbichler, M. Trodden and D. Wesley, Multi-field galileons and higher co-dimension branes, Phys. Rev. D 82 (2010) 124018 [arXiv:1008.1305] [INSPIRE].

    ADS  Google Scholar 

  54. E. Pajer and D. Stefanyszyn, Symmetric Superfluids, JHEP 06 (2019) 008 [arXiv:1812.05133] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  55. T. Grall, S. Jazayeri and E. Pajer, Symmetric Scalars, JCAP 05 (2020) 031 [arXiv:1909.04622] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  56. C. Cheung, J. Mangan and C.-H. Shen, Hidden Conformal Invariance of Scalar Effective Field Theories, Phys. Rev. D 102 (2020) 125009 [arXiv:2005.13027] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  57. G.L. Goon, K. Hinterbichler and M. Trodden, Stability and superluminality of spherical DBI galileon solutions, Phys. Rev. D 83 (2011) 085015 [arXiv:1008.4580] [INSPIRE].

    ADS  Google Scholar 

  58. C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [INSPIRE].

    Google Scholar 

  59. G. Goon, K. Hinterbichler and M. Trodden, A New Class of Effective Field Theories from Embedded Branes, Phys. Rev. Lett. 106 (2011) 231102 [arXiv:1103.6029] [INSPIRE].

    ADS  Google Scholar 

  60. G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Galileons as Wess-Zumino Terms, JHEP 06 (2012) 004 [arXiv:1203.3191] [INSPIRE].

    ADS  Google Scholar 

  61. P. Creminelli, M. Serone, G. Trevisan and E. Trincherini, Inequivalence of Coset Constructions for Spacetime Symmetries, JHEP 02 (2015) 037 [arXiv:1403.3095] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  62. C. de Rham and R.H. Ribeiro, Riding on irrelevant operators, JCAP 11 (2014) 016 [arXiv:1405.5213] [INSPIRE].

    MathSciNet  Google Scholar 

  63. T. Appelquist and C.W. Bernard, The Nonlinear σ Model in the Loop Expansion, Phys. Rev. D 23 (1981) 425 [INSPIRE].

    ADS  Google Scholar 

  64. D.G. Boulware and L.S. Brown, Symmetric space scalar field theory, Annals Phys. 138 (1982) 392 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  65. R. Akhoury and Y.-P. Yao, The Nonlinear σ Model as an Effective Lagrangian, Phys. Rev. D 25 (1982) 3361 [INSPIRE].

    ADS  Google Scholar 

  66. J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  67. M.K. Gaillard, The Effective One Loop Lagrangian With Derivative Couplings, Nucl. Phys. B 268 (1986) 669 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  68. K.M. Costa and F. Liebrand, Normal Coordinate Methods and Heavy Higgs Effects, Phys. Rev. D 40 (1989) 2014 [INSPIRE].

    ADS  Google Scholar 

  69. R. Alonso, E.E. Jenkins and A.V. Manohar, Geometry of the Scalar Sector, JHEP 08 (2016) 101 [arXiv:1605.03602] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  70. J.M. Martín-García, xAct, Efficient tensor computer algebra for the Wolfram Language. http://www.xact.es/.

  71. T. Nutma, xTras: A field-theory inspired xAct package for mathematica, Comput. Phys. Commun. 185 (2014) 1719 [arXiv:1308.3493] [INSPIRE].

    ADS  MATH  Google Scholar 

  72. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE].

  73. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].

  74. I. Low, L. Rodina and Z. Yin, Double Copy in Higher Derivative Operators of Nambu-Goldstone Bosons, Phys. Rev. D 103 (2021) 025004 [arXiv:2009.00008] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  75. S. Bellucci, E. Ivanov and S. Krivonos, AdS/CFT equivalence transformation, Phys. Rev. D 66 (2002) 086001 [Erratum ibid. 67 (2003) 049901] [hep-th/0206126] [INSPIRE].

  76. H. Elvang, D.Z. Freedman, L.-Y. Hung, M. Kiermaier, R.C. Myers and S. Theisen, On renormalization group flows and the a-theorem in 6d, JHEP 10 (2012) 011 [arXiv:1205.3994] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  77. K. Hinterbichler, A. Joyce, J. Khoury and G.E.J. Miller, DBI Realizations of the Pseudo-Conformal Universe and Galilean Genesis Scenarios, JCAP 12 (2012) 030 [arXiv:1209.5742] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  78. P. Di Vecchia, R. Marotta and M. Mojaza, Double-soft behavior of the dilaton of spontaneously broken conformal invariance, JHEP 09 (2017) 001 [arXiv:1705.06175] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  79. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  80. C.V. Johnson, D-branes, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2005), [DOI] [INSPIRE].

  81. D. Baumann and L. McAllister, Inflation and String Theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press (5, 2015), [DOI] [arXiv:1404.2601] [INSPIRE].

  82. A. Altland and B. Simons, Condensed matter field theory, Cambridge University Press (2006).

  83. R. Akhoury and A. Alfakih, Invariant background field method for chiral Lagrangians including Wess-Zumino terms, Annals Phys. 210 (1991) 81 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  84. T.L. Curtright and C.K. Zachos, Geometry, Topology and Supersymmetry in Nonlinear Models, Phys. Rev. Lett. 53 (1984) 1799 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  85. J. Gates, S. J., C.M. Hull and M. Roček, Twisted Multiplets and New Supersymmetric Nonlinear Sigma Models, Nucl. Phys. B 248 (1984) 157 [INSPIRE].

  86. M. Shmakova, One loop corrections to the D3-brane action, Phys. Rev. D 62 (2000) 104009 [hep-th/9906239] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  87. C. Wen and S.-Q. Zhang, D3-Brane Loop Amplitudes from M5-Brane Tree Amplitudes, JHEP 07 (2020) 098 [arXiv:2004.02735] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  88. H. Elvang, M. Hadjiantonis, C.R.T. Jones and S. Paranjape, Electromagnetic Duality and D3-Brane Scattering Amplitudes Beyond Leading Order, arXiv:2006.08928 [INSPIRE].

  89. R. Klein, E. Malek, D. Roest and D. Stefanyszyn, No-go theorem for a gauge vector as a spacetime Goldstone mode, Phys. Rev. D 98 (2018) 065001 [arXiv:1806.06862] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  90. C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, J. Trnka and C. Wen, Vector Effective Field Theories from Soft Limits, Phys. Rev. Lett. 120 (2018) 261602 [arXiv:1801.01496] [INSPIRE].

    ADS  Google Scholar 

  91. J. Novotny, Geometry of special Galileons, Phys. Rev. D 95 (2017) 065019 [arXiv:1612.01738] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  92. F. Přeučil and J. Novotný, Special Galileon at one loop, JHEP 11 (2019) 166 [arXiv:1909.06214] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  93. E. Poisson, A. Pound and I. Vega, The motion of point particles in curved spacetime, Living Rev. Rel. 14 (2011) 7 [arXiv:1102.0529] [INSPIRE].

    MATH  Google Scholar 

  94. B.S. DeWitt and R. Stora, eds., Relativity, groups and topology: Proceedings, 40th Summer School of Theoretical Physics — Session 40: Les Houches, France, June 27 – August 4, 1983, vol. 2, North-holland, Amsterdam, The Netherlands (1984).

    Google Scholar 

  95. L.S. Brown, Stress Tensor Trace Anomaly in a Gravitational Metric: Scalar Fields, Phys. Rev. D 15 (1977) 1469 [INSPIRE].

    ADS  Google Scholar 

  96. L.S. Brown and J.P. Cassidy, Stress Tensor Trace Anomaly in a Gravitational Metric: General Theory, Maxwell Field, Phys. Rev. D 15 (1977) 2810 [INSPIRE].

    ADS  Google Scholar 

  97. K. Hinterbichler and A. Joyce, Hidden symmetry of the Galileon, Phys. Rev. D 92 (2015) 023503 [arXiv:1501.07600] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  98. C. de Rham, M. Fasiello and A.J. Tolley, Galileon Duality, Phys. Lett. B 733 (2014) 46 [arXiv:1308.2702] [INSPIRE].

    ADS  MATH  Google Scholar 

  99. C. De Rham, L. Keltner and A.J. Tolley, Generalized galileon duality, Phys. Rev. D 90 (2014) 024050 [arXiv:1403.3690] [INSPIRE].

    ADS  Google Scholar 

  100. K. Kampf and J. Novotny, Unification of Galileon Dualities, JHEP 10 (2014) 006 [arXiv:1403.6813] [INSPIRE].

    ADS  Google Scholar 

  101. J. Noller and J.H.C. Scargill, The decoupling limit of Multi-Gravity: Multi-Galileons, Dualities and More, JHEP 05 (2015) 034 [arXiv:1503.02700] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  102. L. Heisenberg and C.F. Steinwachs, Geometrized quantum Galileons, JCAP 02 (2020) 031 [arXiv:1909.07111] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  103. L. Heisenberg, J. Noller and J. Zosso, Horndeski under the quantum loupe, JCAP 10 (2020) 010 [arXiv:2004.11655] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  104. D. Roest, The Special Galileon as Goldstone of Diffeomorphisms, arXiv:2004.09559 [INSPIRE].

  105. A.O. Bärvinsky and G.A. Vilkovisky, The generalized Schwinger-De Witt technique and the unique effective action in quantum gravity, Phys. Lett. B 131 (1983) 313 [INSPIRE].

    ADS  Google Scholar 

  106. A.O. Bärvinsky and G.A. Vilkovisky, Covariant perturbation theory. 2: Second order in the curvature. General algorithms, Nucl. Phys. B 333 (1990) 471 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrett Goon.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.05913

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goon, G., Melville, S. & Noller, J. Quantum corrections to generic branes: DBI, NLSM, and more. J. High Energ. Phys. 2021, 159 (2021). https://doi.org/10.1007/JHEP01(2021)159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2021)159

Keywords

  • Effective Field Theories
  • Global Symmetries
  • Renormalization Regularization and Renormalons
  • Space-Time Symmetries