Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Universal flow equations and chaos bound saturation in 2d dilaton gravity
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

On critical exponents for self-similar collapse

30 March 2020

Riccardo Antonelli & Ehsan Hatefi

Unitarity and dilaton effective theory

10 October 2022

Deog Ki Hong, Gyurin Kim & Jun Beom Park

On perturbation theory and critical exponents for self-similar systems

12 January 2021

Ehsan Hatefi & Adrien Kuntz

Interpolating geometries and the stretched dS2 horizon

29 November 2022

Dionysios Anninos & Eleanor Harris

Dynamical Cobordism and the beginning of time: supercritical strings and tachyon condensation

29 August 2022

Roberta Angius, Matilda Delgado & Angel M. Uranga

The Solutions of the Coupled Einstein-Maxwell Equations and Dilaton Equations

01 July 2018

Rui-feng Zhang & Ya Gu

Superluminal chaos after a quantum quench

17 December 2019

Vijay Balasubramanian, Ben Craps, … Kévin Nguyen

Model of Dilaton Gravity with Dynamical Boundary: Results and Prospects

01 December 2019

M. D. Fitkevich

Flows of extremal attractor black holes

13 September 2022

Norihiro Iizuka, Akihiro Ishibashi & Kengo Maeda

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 20 January 2021

Universal flow equations and chaos bound saturation in 2d dilaton gravity

  • D. Grumiller  ORCID: orcid.org/0000-0001-7980-53941 &
  • R. McNees2 

Journal of High Energy Physics volume 2021, Article number: 112 (2021) Cite this article

  • 178 Accesses

  • 8 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We show that several features of the Jackiw-Teitelboim model are in fact universal properties of two-dimensional Maxwell-dilaton gravity theories with a broad class of asymptotics. These theories satisfy a flow equation with the structure of a dimensionally reduced \( T\overline{T} \) deformation, and exhibit chaotic behavior signaled by a maximal Lyapunov exponent. One consequence of our results is a no-go theorem for smooth flows from an asymptotically AdS2 region to a de Sitter fixed point.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Kitaev, A simple model of quantum holography (part 1), in KITP strings seminar, http://online.kitp.ucsb.edu/online/entangled15/kitev/, University of California, Santa Barbara, CA, U.S.A. 7 April 2015.

  3. A. Kitaev, A simple model of quantum holography (part 2), in KITP strings seminar, http://online.kitp.ucsb.edu/online/entangled15/kitaev2/, University of California, Santa Barbara, CA, U.S.A. 27 May 2015.

  4. S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

  5. S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].

    Article  ADS  Google Scholar 

  6. C. Teitelboim, Gravitation and Hamiltonian structure in two space-time dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. R. Jackiw, Lower dimensional gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  8. J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. K. Jensen, Chaos in AdS2 holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].

    Article  ADS  Google Scholar 

  10. D. Grumiller, W. Kummer and D.V. Vassilevich, Dilaton gravity in two-dimensions, Phys. Rept. 369 (2002) 327 [hep-th/0204253] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. H. Afshar, H.A. González, D. Grumiller and D. Vassilevich, Flat space holography and the complex Sachdev-Ye-Kitaev model, Phys. Rev. D 101 (2020) 086024 [arXiv:1911.05739] [INSPIRE].

  12. D.J. Gross, J. Kruthoff, A. Rolph and E. Shaghoulian, \( T\overline{T} \) in AdS2 and quantum mechanics, Phys. Rev. D 101 (2020) 026011 [arXiv:1907.04873] [INSPIRE].

  13. A.B. Zamolodchikov, Expectation value of composite field \( T\overline{T} \) in two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].

  14. F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \)-deformed 2D quantum field theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].

  16. J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. S.R. Lau, On the canonical reduction of spherically symmetric gravity, Class. Quant. Grav. 13 (1996) 1541 [gr-qc/9508028] [INSPIRE].

  18. D. Grumiller and R. McNees, Thermodynamics of black holes in two (and higher) dimensions, JHEP 04 (2007) 074 [hep-th/0703230] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. G.W. Gibbons and M.J. Perry, The physics of 2D stringy space-times, Int. J. Mod. Phys. D 1 (1992) 335 [hep-th/9204090] [INSPIRE].

    Article  ADS  Google Scholar 

  20. R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde, String propagation in a black hole geometry, Nucl. Phys. B 371 (1992) 269 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Hartman, J. Kruthoff, E. Shaghoulian and A. Tajdini, Holography at finite cutoff with a T2 deformation, JHEP 03 (2019) 004 [arXiv:1807.11401] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. E. Witten, Deformations of JT gravity and phase transitions, arXiv:2006.03494 [INSPIRE].

  23. D. Anninos and D.M. Hofman, Infrared realization of dS2 in AdS2, Class. Quant. Grav. 35 (2018) 085003 [arXiv:1703.04622] [INSPIRE].

  24. A. Almheiri and J. Polchinski, Models of AdS2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].

    Article  ADS  Google Scholar 

  25. D. Grumiller, R. McNees, J. Salzer, C. Valcárcel and D. Vassilevich, Menagerie of AdS2 boundary conditions, JHEP 10 (2017) 203 [arXiv:1708.08471] [INSPIRE].

    Article  ADS  Google Scholar 

  26. D. Anninos, D.A. Galante and D.M. Hofman, De Sitter horizons & holographic liquids, JHEP 07 (2019) 038 [arXiv:1811.08153] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. D. Grumiller, R. McNees and J. Salzer, Cosmological constant as confining U(1) charge in two-dimensional dilaton gravity, Phys. Rev. D 90 (2014) 044032 [arXiv:1406.7007] [INSPIRE].

  28. A. Bagchi, D. Grumiller, J. Salzer, S. Sarkar and F. Schöller, Flat space cosmologies in two dimensions — phase transitions and asymptotic mass-domination, Phys. Rev. D 90 (2014) 084041 [arXiv:1408.5337] [INSPIRE].

  29. M. Guica and R. Monten, \( T\overline{T} \) and the mirage of a bulk cutoff, arXiv:1906.11251 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Institute for Theoretical Physics, TU Wien, Wiedner Hauptstrasse 8–10, A-1040, Vienna, Austria

    D. Grumiller

  2. Department of Physics, Loyola University Chicago, 1032 W Sheridan Rd, Chicago, IL, USA

    R. McNees

Authors
  1. D. Grumiller
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. R. McNees
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to D. Grumiller.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2007.03673

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grumiller, D., McNees, R. Universal flow equations and chaos bound saturation in 2d dilaton gravity. J. High Energ. Phys. 2021, 112 (2021). https://doi.org/10.1007/JHEP01(2021)112

Download citation

  • Received: 17 July 2020

  • Revised: 03 November 2020

  • Accepted: 07 December 2020

  • Published: 20 January 2021

  • DOI: https://doi.org/10.1007/JHEP01(2021)112

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • 2D Gravity
  • Black Holes
  • Gauge-gravity correspondence
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.