Abstract
We show that several features of the Jackiw-Teitelboim model are in fact universal properties of two-dimensional Maxwell-dilaton gravity theories with a broad class of asymptotics. These theories satisfy a flow equation with the structure of a dimensionally reduced \( T\overline{T} \) deformation, and exhibit chaotic behavior signaled by a maximal Lyapunov exponent. One consequence of our results is a no-go theorem for smooth flows from an asymptotically AdS2 region to a de Sitter fixed point.
References
J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].
A. Kitaev, A simple model of quantum holography (part 1), in KITP strings seminar, http://online.kitp.ucsb.edu/online/entangled15/kitev/, University of California, Santa Barbara, CA, U.S.A. 7 April 2015.
A. Kitaev, A simple model of quantum holography (part 2), in KITP strings seminar, http://online.kitp.ucsb.edu/online/entangled15/kitaev2/, University of California, Santa Barbara, CA, U.S.A. 27 May 2015.
S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].
C. Teitelboim, Gravitation and Hamiltonian structure in two space-time dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].
R. Jackiw, Lower dimensional gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].
J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
K. Jensen, Chaos in AdS2 holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
D. Grumiller, W. Kummer and D.V. Vassilevich, Dilaton gravity in two-dimensions, Phys. Rept. 369 (2002) 327 [hep-th/0204253] [INSPIRE].
H. Afshar, H.A. González, D. Grumiller and D. Vassilevich, Flat space holography and the complex Sachdev-Ye-Kitaev model, Phys. Rev. D 101 (2020) 086024 [arXiv:1911.05739] [INSPIRE].
D.J. Gross, J. Kruthoff, A. Rolph and E. Shaghoulian, \( T\overline{T} \) in AdS2 and quantum mechanics, Phys. Rev. D 101 (2020) 026011 [arXiv:1907.04873] [INSPIRE].
A.B. Zamolodchikov, Expectation value of composite field \( T\overline{T} \) in two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].
F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].
A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \)-deformed 2D quantum field theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].
J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].
S.R. Lau, On the canonical reduction of spherically symmetric gravity, Class. Quant. Grav. 13 (1996) 1541 [gr-qc/9508028] [INSPIRE].
D. Grumiller and R. McNees, Thermodynamics of black holes in two (and higher) dimensions, JHEP 04 (2007) 074 [hep-th/0703230] [INSPIRE].
G.W. Gibbons and M.J. Perry, The physics of 2D stringy space-times, Int. J. Mod. Phys. D 1 (1992) 335 [hep-th/9204090] [INSPIRE].
R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde, String propagation in a black hole geometry, Nucl. Phys. B 371 (1992) 269 [INSPIRE].
T. Hartman, J. Kruthoff, E. Shaghoulian and A. Tajdini, Holography at finite cutoff with a T2 deformation, JHEP 03 (2019) 004 [arXiv:1807.11401] [INSPIRE].
E. Witten, Deformations of JT gravity and phase transitions, arXiv:2006.03494 [INSPIRE].
D. Anninos and D.M. Hofman, Infrared realization of dS2 in AdS2, Class. Quant. Grav. 35 (2018) 085003 [arXiv:1703.04622] [INSPIRE].
A. Almheiri and J. Polchinski, Models of AdS2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].
D. Grumiller, R. McNees, J. Salzer, C. Valcárcel and D. Vassilevich, Menagerie of AdS2 boundary conditions, JHEP 10 (2017) 203 [arXiv:1708.08471] [INSPIRE].
D. Anninos, D.A. Galante and D.M. Hofman, De Sitter horizons & holographic liquids, JHEP 07 (2019) 038 [arXiv:1811.08153] [INSPIRE].
D. Grumiller, R. McNees and J. Salzer, Cosmological constant as confining U(1) charge in two-dimensional dilaton gravity, Phys. Rev. D 90 (2014) 044032 [arXiv:1406.7007] [INSPIRE].
A. Bagchi, D. Grumiller, J. Salzer, S. Sarkar and F. Schöller, Flat space cosmologies in two dimensions — phase transitions and asymptotic mass-domination, Phys. Rev. D 90 (2014) 084041 [arXiv:1408.5337] [INSPIRE].
M. Guica and R. Monten, \( T\overline{T} \) and the mirage of a bulk cutoff, arXiv:1906.11251 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2007.03673
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Grumiller, D., McNees, R. Universal flow equations and chaos bound saturation in 2d dilaton gravity. J. High Energ. Phys. 2021, 112 (2021). https://doi.org/10.1007/JHEP01(2021)112
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2021)112
Keywords
- 2D Gravity
- Black Holes
- Gauge-gravity correspondence