Dark matter in minimal dimensional transmutation with multicritical-point principle

Abstract

We investigate a model with two real scalar fields that minimally generates exponentially different scales in an analog of the Coleman-Weinberg mechanism. The classical scale invariance — the absence of dimensionful parameters in the tree-level action, required in such a scale generation — can naturally be understood as a special case of the multicritical-point principle. This two-scalar model can couple to the Standard Model Higgs field to realize a maximum multicriticality (with all the dimensionful parameters being tuned to critical values) for field values around the electroweak scale, providing a generalization of the classical scale invariance to a wider class of criticality. As a bonus, one of the two scalars can be identified as Higgs-portal dark matter. We find that this model can be consistent with the constraints from dark matter relic abundance, its direct detection experiments, and the latest LHC data, while keeping the perturbativity up to the reduced Planck scale. We then present successful benchmark points satisfying all these constraints: the mass of dark matter is a few TeV, and its scattering cross section with nuclei is of the order of 109 pb, reachable in near future experiments. The mass of extra Higgs boson H is smaller than or of the order of 100 GeV, and the cross section of e+eZH can be of fb level for collision energy 250 GeV, targetted at future lepton colliders.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    Y. Hamada, H. Kawai, K.-y. Oda and S.C. Park, Higgs inflation from Standard Model criticality, Phys. Rev. D 91 (2015) 053008 [arXiv:1408.4864] [INSPIRE].

  2. [2]

    Particle Data Group collaboration, Review of particle physics, Prog. Theor. Exp. Phys. 2020 (2020) 083C01.

  3. [3]

    S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    K.A. Meissner and H. Nicolai, Conformal Symmetry and the Standard Model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A Solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].

  6. [6]

    S. Iso, N. Okada and Y. Orikasa, Classically conformal B L extended Standard Model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    S. Iso, N. Okada and Y. Orikasa, The minimal B-L model naturally realized at TeV scale, Phys. Rev. D 80 (2009) 115007 [arXiv:0909.0128] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    T. Hur and P. Ko, Scale invariant extension of the standard model with strongly interacting hidden sector, Phys. Rev. Lett. 106 (2011) 141802 [arXiv:1103.2571] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    S. Iso and Y. Orikasa, TeV Scale B-L model with a flat Higgs potential at the Planck scale: In view of the hierarchy problem, PTEP 2013 (2013) 023B08 [arXiv:1210.2848] [INSPIRE].

  10. [10]

    C. Englert, J. Jaeckel, V.V. Khoze and M. Spannowsky, Emergence of the Electroweak Scale through the Higgs Portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    M. Hashimoto, S. Iso and Y. Orikasa, Radiative symmetry breaking at the Fermi scale and flat potential at the Planck scale, Phys. Rev. D 89 (2014) 016019 [arXiv:1310.4304] [INSPIRE].

  12. [12]

    M. Holthausen, J. Kubo, K.S. Lim and M. Lindner, Electroweak and Conformal Symmetry Breaking by a Strongly Coupled Hidden Sector, JHEP 12 (2013) 076 [arXiv:1310.4423] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    M. Hashimoto, S. Iso and Y. Orikasa, Radiative symmetry breaking from flat potential in various U(1)’ models, Phys. Rev. D 89 (2014) 056010 [arXiv:1401.5944] [INSPIRE].

  14. [14]

    J. Kubo, K.S. Lim and M. Lindner, Electroweak Symmetry Breaking via QCD, Phys. Rev. Lett. 113 (2014) 091604 [arXiv:1403.4262] [INSPIRE].

  15. [15]

    J. Kubo and M. Yamada, Genesis of electroweak and dark matter scales from a bilinear scalar condensate, Phys. Rev. D 93 (2016) 075016 [arXiv:1505.05971] [INSPIRE].

  16. [16]

    D.-W. Jung, J. Lee and S.-H. Nam, Scalar dark matter in the conformally invariant extension of the standard model, Phys. Lett. B 797 (2019) 134823 [arXiv:1904.10209] [INSPIRE].

    Article  Google Scholar 

  17. [17]

    W.A. Bardeen, On naturalness in the standard model, in Ontake Summer Institute on Particle Physics, Ontake Mountain Japan (1995).

  18. [18]

    Y. Hamada, H. Kawai and K.-y. Oda, Bare Higgs mass at Planck scale, Phys. Rev. D 87 (2013) 053009 [Erratum ibid. 89 (2014) 059901] [arXiv:1210.2538] [INSPIRE].

  19. [19]

    P.H. Chankowski, A. Lewandowski, K.A. Meissner and H. Nicolai, Softly broken conformal symmetry and the stability of the electroweak scale, Mod. Phys. Lett. A 30 (2015) 1550006 [arXiv:1404.0548] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    A. Latosinski, A. Lewandowski, K.A. Meissner and H. Nicolai, Conformal Standard Model with an extended scalar sector, JHEP 10 (2015) 170 [arXiv:1507.01755] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    A. Lewandowski, K.A. Meissner and H. Nicolai, Conformal Standard Model, Leptogenesis and Dark Matter, Phys. Rev. D 97 (2018) 035024 [arXiv:1710.06149] [INSPIRE].

  22. [22]

    K.A. Meissner, H. Nicolai and J. Plefka, Softly broken conformal symmetry with quantum gravitational corrections, Phys. Lett. B 791 (2019) 62 [arXiv:1811.05216] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    M.J.G. Veltman, The Infrared–Ultraviolet Connection, Acta Phys. Polon. B 12 (1981) 437 [INSPIRE].

    Google Scholar 

  24. [24]

    C.D. Froggatt and H.B. Nielsen, Standard model criticality prediction: Top mass 173 ± 5-GeV and Higgs mass 135 ± 9-GeV, Phys. Lett. B 368 (1996) 96 [hep-ph/9511371] [INSPIRE].

  25. [25]

    H.B. Nielsen, PREdicted the Higgs Mass, Bled Workshops Phys. 13 (2012) 94 [arXiv:1212.5716] [INSPIRE].

    Google Scholar 

  26. [26]

    Y. Hamada, H. Kawai and K.-y. Oda, Eternal Higgs inflation and the cosmological constant problem, Phys. Rev. D 92 (2015) 045009 [arXiv:1501.04455] [INSPIRE].

  27. [27]

    H. Kawai and T. Okada, Asymptotically Vanishing Cosmological Constant in the Multiverse, Int. J. Mod. Phys. A 26 (2011) 3107 [arXiv:1104.1764] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    H. Kawai and T. Okada, Solving the Naturalness Problem by Baby Universes in the Lorentzian Multiverse, Prog. Theor. Phys. 127 (2012) 689 [arXiv:1110.2303] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    H. Kawai, Low energy effective action of quantum gravity and the naturalness problem, Int. J. Mod. Phys. A 28 (2013) 1340001 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    Y. Hamada, H. Kawai and K. Kawana, Evidence of the Big Fix, Int. J. Mod. Phys. A 29 (2014) 1450099 [arXiv:1405.1310] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    Y. Hamada, H. Kawai and K. Kawana, Weak Scale From the Maximum Entropy Principle, PTEP 2015 (2015) 033B06 [arXiv:1409.6508] [INSPIRE].

  32. [32]

    Y. Hamada, H. Kawai and K. Kawana, Natural solution to the naturalness problem: The universe does fine-tuning, PTEP 2015 (2015) 123B03 [arXiv:1509.05955] [INSPIRE].

  33. [33]

    S.R. Coleman, Why There Is Nothing Rather Than Something: A Theory of the Cosmological Constant, Nucl. Phys. B 310 (1988) 643 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    J. Haruna and H. Kawai, Weak scale from Planck scale: Mass scale generation in a classically conformal two-scalar system, PTEP 2020 (2020) 033B01 [arXiv:1905.05656] [INSPIRE].

  35. [35]

    K.A. Meissner and H. Nicolai, Effective action, conformal anomaly and the issue of quadratic divergences, Phys. Lett. B 660 (2008) 260 [arXiv:0710.2840] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    H. Aoki and S. Iso, Revisiting the Naturalness Problem: Who is afraid of quadratic divergences?, Phys. Rev. D 86 (2012) 013001 [arXiv:1201.0857] [INSPIRE].

  37. [37]

    C. Wetterich and M. Yamada, Gauge hierarchy problem in asymptotically safe gravity — the resurgence mechanism, Phys. Lett. B 770 (2017) 268 [arXiv:1612.03069] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    A. Eichhorn, Y. Hamada, J. Lumma and M. Yamada, Quantum gravity fluctuations flatten the Planck-scale Higgs potential, Phys. Rev. D 97 (2018) 086004 [arXiv:1712.00319] [INSPIRE].

  39. [39]

    E. Gildener and S. Weinberg, Symmetry Breaking and Scalar Bosons, Phys. Rev. D 13 (1976) 3333 [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].

  42. [42]

    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The Minimal model of nonbaryonic dark matter: A Singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].

  43. [43]

    J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [Erratum ibid. 92 (2015) 039906] [arXiv:1306.4710] [INSPIRE].

  44. [44]

    Y. Zeldovich, I. Kobzarev and L.B. Okun, Cosmological Consequences of the Spontaneous Breakdown of Discrete Symmetry, Zh. Eksp. Teor. Fiz. 67 (1974) 3 [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    T.W.B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9 (1976) 1387 [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    Y. Hamada, H. Kawai and K.-y. Oda, Minimal Higgs inflation, PTEP 2014 (2014) 023B02 [arXiv:1308.6651] [INSPIRE].

  47. [47]

    E.W. Kolb and M.S. Turner, The Early Universe, Front. Phys. 69 (1990) 1.

    MathSciNet  MATH  Google Scholar 

  48. [48]

    H.-Y. Cheng and C.-W. Chiang, Revisiting Scalar and Pseudoscalar Couplings with Nucleons, JHEP 07 (2012) 009 [arXiv:1202.1292] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].

  50. [50]

    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

  51. [51]

    XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  52. [52]

    Y. Hamada, H. Kawai, Y. Nakanishi and K.-y. Oda, Cosmological implications of Standard Model criticality and Higgs inflation, Nucl. Phys. B 953 (2020) 114946 [arXiv:1709.09350] [INSPIRE].

    Article  Google Scholar 

  53. [53]

    T. Robens and T. Stefaniak, LHC Benchmark Scenarios for the Real Higgs Singlet Extension of the Standard Model, Eur. Phys. J. C 76 (2016) 268 [arXiv:1601.07880] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    CMS collaboration, Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two muons and two b quarks in pp collisions at 13 TeV, Phys. Lett. B 795 (2019) 398 [arXiv:1812.06359] [INSPIRE].

  55. [55]

    S. Kanemura, M. Kikuchi and K. Yagyu, Radiative corrections to the Higgs boson couplings in the model with an additional real singlet scalar field, Nucl. Phys. B 907 (2016) 286 [arXiv:1511.06211] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  56. [56]

    S. Kanemura, M. Kikuchi and K. Yagyu, One-loop corrections to the Higgs self-couplings in the singlet extension, Nucl. Phys. B 917 (2017) 154 [arXiv:1608.01582] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, Phys. Rev. D 101 (2020) 012002 [arXiv:1909.02845] [INSPIRE].

  58. [58]

    CMS collaboration, Combined measurements of Higgs boson couplings in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 421 [arXiv:1809.10733] [INSPIRE].

  59. [59]

    W.-F. Chang, T. Modak and J.N. Ng, Signal for a light singlet scalar at the LHC, Phys. Rev. D 97 (2018) 055020 [arXiv:1711.05722] [INSPIRE].

  60. [60]

    LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3 and OPAL collaborations, Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

  61. [61]

    H. Baer et al., eds., The International Linear Collider Technical Design Report. Volume 2: Physics, arXiv:1306.6352 [INSPIRE].

  62. [62]

    K. Fujii et al., Physics Case for the 250 GeV Stage of the International Linear Collider, arXiv:1710.07621 [INSPIRE].

  63. [63]

    TLEP Design Study Working Group collaboration, First Look at the Physics Case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].

  64. [64]

    CEPC Study Group collaboration, CEPC Conceptual Design Report. Volume 2: Physics & Detector, arXiv:1811.10545 [INSPIRE].

  65. [65]

    A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

  66. [66]

    International Large Detector Concept Group collaboration, Search for Light Scalars Produced in Association with a Z boson at the 250 GeV stage of the ILC, PoS(ICHEP2018)630 [INSPIRE].

  67. [67]

    Y. Asano, H. Kawai and A. Tsuchiya, Factorization of the Effective Action in the IIB Matrix Model, Int. J. Mod. Phys. A 27 (2012) 1250089 [arXiv:1205.1468] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  68. [68]

    Y. Hamada, H. Kawai, K.-y. Oda and S.C. Park, Higgs Inflation is Still Alive after the Results from BICEP2, Phys. Rev. Lett. 112 (2014) 241301 [arXiv:1403.5043] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    F. Bezrukov and M. Shaposhnikov, Higgs inflation at the critical point, Phys. Lett. B 734 (2014) 249 [arXiv:1403.6078] [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    Y. Hamada, K.-y. Oda and F. Takahashi, Topological Higgs inflation: Origin of Standard Model criticality, Phys. Rev. D 90 (2014) 097301 [arXiv:1408.5556] [INSPIRE].

  71. [71]

    B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunter’s Guide, Front. Phys. 80 (2000) 1.

    Google Scholar 

  73. [73]

    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kei Yagyu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2008.08700

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamada, Y., Kawai, H., Oda, Ky. et al. Dark matter in minimal dimensional transmutation with multicritical-point principle. J. High Energ. Phys. 2021, 87 (2021). https://doi.org/10.1007/JHEP01(2021)087

Download citation

Keywords

  • Beyond Standard Model
  • Higgs Physics