Quiver origami: discrete gauging and folding

Abstract

We study two types of discrete operations on Coulomb branches of 3d \( \mathcal{N} \) = 4 quiver gauge theories using both abelianisation and the monopole formula. We generalise previous work on discrete quotients of Coulomb branches and introduce novel wreathed quiver theories. We further study quiver folding which produces Coulomb branches of non-simply laced quivers. Our methods explicitly describe Coulomb branches in terms of generators and relations including mass deformations.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Coulomb branch and the moduli space of instantons, JHEP 12 (2014) 103 [arXiv:1408.6835] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d N = 4 gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    H. Nakajima and A. Weekes, Coulomb branches of quiver gauge theories with symmetrizers, arXiv:1907.06552 [INSPIRE].

  4. [4]

    M. Bullimore, T. Dimofte and D. Gaiotto, The Coulomb branch of 3d N = 4 theories, Commun. Math. Phys. 354 (2017) 671 [arXiv:1503.04817] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    A. Hanany and A. Zajac, Discrete gauging in Coulomb branches of three dimensional N = 4 supersymmetric gauge theories, JHEP 08 (2018) 158 [arXiv:1807.03221] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    A. Hanany and M. Sperling, Discrete quotients of 3-dimensional N = 4 Coulomb branches via the cycle index, JHEP 08 (2018) 157 [arXiv:1807.02784] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    A. Hanany and D. Miketa, Nilpotent orbit Coulomb branches of types AD, JHEP 02 (2019) 113 [arXiv:1807.11491] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    N. Marcus and A. Sagnotti, Tree level constraints on gauge groups for type I superstrings, Phys. Lett. B 119 (1982) 97 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds, Nucl. Phys. B 261 (1985) 678 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds. 2, Nucl. Phys. B 274 (1986) 285 [INSPIRE].

  11. [11]

    A. Dabholkar, Lectures on orientifolds and duality, in ICTP summer school in high-energy physics and cosmology, (1997), pg. 128 [hep-th/9804208] [INSPIRE].

  12. [12]

    A. Sen, Duality and orbifolds, Nucl. Phys. B 474 (1996) 361 [hep-th/9604070] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    A. Bourget et al., The Higgs mechanism — Hasse diagrams for symplectic singularities, JHEP 01 (2020) 157 [arXiv:1908.04245] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    P.N. Achar and A. Henderson, Geometric Satake, Springer correspondence and small representations, Selecta Math. 19 (2013) 949 [arXiv:1108.4999].

    MathSciNet  Article  Google Scholar 

  15. [15]

    A. Bourget, J.F. Grimminger, A. Hanany, M. Sperling and Z. Zhong, The affine Grassmannian, quivers and branes, to appear (2021).

  16. [16]

    A. Braverman, M. Finkelberg and H. Nakajima, Coulomb branches of 3d N = 4 quiver gauge theories and slices in the affine Grassmannian, Adv. Theor. Math. Phys. 23 (2019) 75 [arXiv:1604.03625] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  17. [17]

    H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional N = 4 gauge theories, I, Adv. Theor. Math. Phys. 20 (2016) 595 [arXiv:1503.03676] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  18. [18]

    A. Braverman, M. Finkelberg and H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional N = 4 gauge theories, II, Adv. Theor. Math. Phys. 22 (2018) 1071 [arXiv:1601.03586] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  19. [19]

    A. Hanany and A. Zajac, Ungauging schemes and Coulomb branches of non-simply laced quiver theories, JHEP 09 (2020) 193 [arXiv:2002.05716] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    R. Brylinski and B. Kostant, Nilpotent orbits, normality, and hamiltonian group actions, J. Amer. Math. Soc. 7 (1994) 269.

    MathSciNet  MATH  Google Scholar 

  21. [21]

    P.Z. Kobak and A. Swann, Classical nilpotent orbits as hyper-Kähler quotients, Int. J. Math. 07 (1996) 193.

    Article  Google Scholar 

  22. [22]

    D. Bump, Lie groups, Springer, New York, NY, U.S.A. (2004).

  23. [23]

    A. Hanany and R. Kalveks, Quiver theories and formulae for nilpotent orbits of exceptional algebras, JHEP 11 (2017) 126 [arXiv:1709.05818] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    Y. Namikawa, A characterization of nilpotent orbit closures among symplectic singularities, Math. Annalen 370 (2017) 811.

    MathSciNet  Article  Google Scholar 

  25. [25]

    A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. École Norm. Sup. 9 (1976) 1.

    MathSciNet  Article  Google Scholar 

  26. [26]

    D. Gaiotto, A. Neitzke and Y. Tachikawa, Argyres-Seiberg duality and the Higgs branch, Commun. Math. Phys. 294 (2010) 389 [arXiv:0810.4541] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    M. Dedushenko, Y. Fan, S.S. Pufu and R. Yacoby, Coulomb branch operators and mirror symmetry in three dimensions, JHEP 04 (2018) 037 [arXiv:1712.09384] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    M. Dedushenko, Y. Fan, S.S. Pufu and R. Yacoby, Coulomb branch quantization and Abelianized monopole bubbling, JHEP 10 (2019) 179 [arXiv:1812.08788] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    A. Kerber, Applied finite group actions, Springer, Berlin, Heidelberg, Germany (1999).

  30. [30]

    A. Hanany and R. Kalveks, Quiver theories for moduli spaces of classical group nilpotent orbits, JHEP 06 (2016) 130 [arXiv:1601.04020] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    G. Cheng, A. Hanany, Y. Li and Y. Zhao, Coulomb branch for A-type balanced quivers in 3d N = 4 gauge theories, arXiv:1701.03825 [INSPIRE].

  32. [32]

    S. Lee, Discrete gauging: weight maps, finite groups and multiple nodes, unpublished Summer report (2018).

  33. [33]

    A. Bourget and A. Pini, Non-connected gauge groups and the plethystic program, JHEP 10 (2017) 033 [arXiv:1706.03781] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    R. Wendt, Weyl’s character formula for non-connected Lie groups and orbital theory for twisted affine Lie algebras, J. Funct. Anal. 180 (2001) 31.

    MathSciNet  Article  Google Scholar 

  35. [35]

    A. Hanany and R. Kalveks, Quiver theories and Hilbert series of classical slodowy intersections, Nucl. Phys. B 952 (2020) 114939 [arXiv:1909.12793] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  36. [36]

    R. Yamagishi, Four-dimensional conical symplectic hypersurfaces, J. Alg. 560 (2020) 538.

    MathSciNet  Article  Google Scholar 

  37. [37]

    A. Hanany and N. Mekareeya, Tri-vertices and SU(2)’s, JHEP 02 (2011) 069 [arXiv:1012.2119] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    M. Finkelberg and E. Goncharov, Coulomb branch of a multiloop quiver gauge theory, Funct. Anal. Appl. 53 (2019) 241 [arXiv:1903.05822] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  39. [39]

    K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    B. Feng and A. Hanany, Mirror symmetry by O3-planes, JHEP 11 (2000) 033 [hep-th/0004092] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    A. Hanany, N. Mekareeya and S.S. Razamat, Hilbert series for moduli spaces of two instantons, JHEP 01 (2013) 070 [arXiv:1205.4741] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. [43]

    A. Dey, A. Hanany, P. Koroteev and N. Mekareeya, On three-dimensional quiver gauge theories of type B, JHEP 09 (2017) 067 [arXiv:1612.00810] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  44. [44]

    N. Haouzi and C. Kozçaz, The ABCDEFG of little strings, arXiv:1711.11065 [INSPIRE].

  45. [45]

    N. Haouzi and C. Kozçaz, Supersymmetric Wilson loops, instantons, and deformed W -algebras, arXiv:1907.03838 [INSPIRE].

  46. [46]

    T. Kimura and V. Pestun, Fractional quiver W -algebras, Lett. Math. Phys. 108 (2018) 2425 [arXiv:1705.04410] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. [47]

    G. Zafrir, Compactifications of 5d SCFTs with a twist, JHEP 01 (2017) 097 [arXiv:1605.08337] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. [48]

    K. Ohmori, Y. Tachikawa and G. Zafrir, Compactifications of 6d N = (1, 0) SCFTs with non-trivial Stiefel-Whitney classes, JHEP 04 (2019) 006 [arXiv:1812.04637] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. [49]

    S. Cabrera, A. Hanany and M. Sperling, Magnetic quivers, Higgs branches, and 6d N = (1, 0) theories, JHEP 06 (2019) 071 [Erratum ibid. 07 (2019) 137] [arXiv:1904.12293] [INSPIRE].

  50. [50]

    A. Hanany and A. Pini, HWG for Coulomb branch of 3d Sicilian theory mirrors, arXiv:1707.09784 [INSPIRE].

  51. [51]

    B. Fu, D. Juteau, P. Levy and E. Sommers, Generic singularities of nilpotent orbit closures, Adv. Math. 305 (2017) 1.

    MathSciNet  Article  Google Scholar 

  52. [52]

    A. Malkin, V. Ostrik and M. Vybornov, The minimal degeneration singularities in the affine Grassmannians, Duke Math. J. 126 (2005) 233 [math.AG/0305095].

  53. [53]

    S. Cabrera, A. Hanany and Z. Zhong, Nilpotent orbits and the Coulomb branch of T σ (G) theories: special orthogonal vs orthogonal gauge group factors, JHEP 11 (2017) 079 [arXiv:1707.06941] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dominik Miketa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2005.05273

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bourget, A., Hanany, A. & Miketa, D. Quiver origami: discrete gauging and folding. J. High Energ. Phys. 2021, 86 (2021). https://doi.org/10.1007/JHEP01(2021)086

Download citation

Keywords

  • Field Theories in Lower Dimensions
  • Global Symmetries
  • Supersymmetric Gauge Theory
  • Solitons Monopoles and Instantons