Hamiltonian analysis of Mimetic gravity with higher derivatives

Abstract

Two types of mimetic gravity models with higher derivatives of the mimetic field are analyzed in the Hamiltonian formalism. For the first type of mimetic gravity, the Ricci scalar only couples to the mimetic field and we demonstrate the number of degrees of freedom (DOFs) is three. Then in both Einstein frame and Jordan frame, we perform the Hamiltonian analysis for the extended mimetic gravity with higher derivatives directly coupled to the Ricci scalar. We show that different from previous studies working at the cosmological perturbation level, where only three propagating DOFs show up, this generalized mimetic model, in general, has four DOFs. To understand this discrepancy, we consider the unitary gauge and find out that the number of DOFs reduces to three. We conclude that the reason why this system looks peculiar is that the Dirac matrix of all secondary constraints becomes singular in the unitary gauge, resulting in extra secondary constraints and thus reducing the number of DOFs. Furthermore, we give a simple example of a dynamic system to illustrate how gauge choice can affect the number of secondary constraints as well as the DOFs when the rank of the Dirac matrix is gauge dependent.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    A.H. Chamseddine and V. Mukhanov, Mimetic Dark Matter, JHEP 11 (2013) 135 [arXiv:1308.5410] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    J.D. Bekenstein, The Relation between physical and gravitational geometry, Phys. Rev. D 48 (1993) 3641 [gr-qc/9211017] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    N. Deruelle and J. Rua, Disformal Transformations, Veiled General Relativity and Mimetic Gravity, JCAP 09 (2014) 002 [arXiv:1407.0825] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    F. Arroja, N. Bartolo, P. Karmakar and S. Matarrese, The two faces of mimetic Horndeski gravity: disformal transformations and Lagrange multiplier, JCAP 09 (2015) 051 [arXiv:1506.08575] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    G. Domènech, S. Mukohyama, R. Namba, A. Naruko, R. Saitou and Y. Watanabe, Derivative-dependent metric transformation and physical degrees of freedom, Phys. Rev. D 92 (2015) 084027 [arXiv:1507.05390] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    A. Golovnev, On the recently proposed Mimetic Dark Matter, Phys. Lett. B 728 (2014) 39 [arXiv:1310.2790] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  7. [7]

    A.H. Chamseddine, V. Mukhanov and A. Vikman, Cosmology with Mimetic Matter, JCAP 06 (2014) 017 [arXiv:1403.3961] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    S. Nojiri and S.D. Odintsov, Mimetic F (R) gravity: inflation, dark energy and bounce, arXiv:1408.3561 [Erratum ibid. 29 (2014) 1450211] [INSPIRE].

  9. [9]

    G. Leon and E.N. Saridakis, Dynamical behavior in mimetic F (R) gravity, JCAP 04 (2015) 031 [arXiv:1501.00488] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    A.V. Astashenok, S.D. Odintsov and V.K. Oikonomou, Modified Gauss-Bonnet gravity with the Lagrange multiplier constraint as mimetic theory, Class. Quant. Grav. 32 (2015) 185007 [arXiv:1504.04861] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    R. Myrzakulov, L. Sebastiani and S. Vagnozzi, Inflation in f (R, ϕ)-theories and mimetic gravity scenario, Eur. Phys. J. C 75 (2015) 444 [arXiv:1504.07984] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    Y. Rabochaya and S. Zerbini, A note on a mimetic scalar-tensor cosmological model, Eur. Phys. J. C 76 (2016) 85 [arXiv:1509.03720] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    F. Arroja, N. Bartolo, P. Karmakar and S. Matarrese, Cosmological perturbations in mimetic Horndeski gravity, JCAP 04 (2016) 042 [arXiv:1512.09374] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    G. Cognola, R. Myrzakulov, L. Sebastiani, S. Vagnozzi and S. Zerbini, Covariant Hořava-like and mimetic Horndeski gravity: cosmological solutions and perturbations, Class. Quant. Grav. 33 (2016) 225014 [arXiv:1601.00102] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  15. [15]

    S. Nojiri, S.D. Odintsov and V.K. Oikonomou, Unimodular-Mimetic Cosmology, Class. Quant. Grav. 33 (2016) 125017 [arXiv:1601.07057] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  16. [16]

    D. Momeni, A. Altaibayeva and R. Myrzakulov, New Modified Mimetic Gravity, Int. J. Geom. Meth. Mod. Phys. 11 (2014) 1450091 [arXiv:1407.5662] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  17. [17]

    A.H. Chamseddine and V. Mukhanov, Ghost Free Mimetic Massive Gravity, JHEP 06 (2018) 060 [arXiv:1805.06283] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  18. [18]

    A.H. Chamseddine and V. Mukhanov, Mimetic Massive Gravity: Beyond Linear Approximation, JHEP 06 (2018) 062 [arXiv:1805.06598] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  19. [19]

    E. Alvarez, J. Anero, G. Milans Del Bosch and R. Santos-Garcia, Massive Unimodular Gravity, Class. Quant. Grav. 37 (2020) 135001 [arXiv:1806.10507] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    H. Saadi, A Cosmological Solution to Mimetic Dark Matter, Eur. Phys. J. C 76 (2016) 14 [arXiv:1411.4531] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    L. Mirzagholi and A. Vikman, Imperfect Dark Matter, JCAP 06 (2015) 028 [arXiv:1412.7136] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    J. Matsumoto, S.D. Odintsov and S.V. Sushkov, Cosmological perturbations in a mimetic matter model, Phys. Rev. D 91 (2015) 064062 [arXiv:1501.02149] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    S. Ramazanov, Initial Conditions for Imperfect Dark Matter, JCAP 12 (2015) 007 [arXiv:1507.00291] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    R. Myrzakulov, L. Sebastiani, S. Vagnozzi and S. Zerbini, Static spherically symmetric solutions in mimetic gravity: rotation curves and wormholes, Class. Quant. Grav. 33 (2016) 125005 [arXiv:1510.02284] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  25. [25]

    A.V. Astashenok and S.D. Odintsov, From neutron stars to quark stars in mimetic gravity, Phys. Rev. D 94 (2016) 063008 [arXiv:1512.07279] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    A.H. Chamseddine and V. Mukhanov, Inhomogeneous Dark Energy, JCAP 02 (2016) 040 [arXiv:1601.04941] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    S. Nojiri, S.D. Odintsov and V.K. Oikonomou, Viable Mimetic Completion of Unified Inflation-Dark Energy Evolution in Modified Gravity, Phys. Rev. D 94 (2016) 104050 [arXiv:1608.07806] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    E. Babichev and S. Ramazanov, Gravitational focusing of Imperfect Dark Matter, Phys. Rev. D 95 (2017) 024025 [arXiv:1609.08580] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    A.H. Chamseddine and V. Mukhanov, Nonsingular Black Hole, Eur. Phys. J. C 77 (2017) 183 [arXiv:1612.05861] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    S. Brahma, A. Golovnev and D.-H. Yeom, On singularity-resolution in mimetic gravity, Phys. Lett. B 782 (2018) 280 [arXiv:1803.03955] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  31. [31]

    N. Sadeghnezhad and K. Nozari, Braneworld Mimetic Cosmology, Phys. Lett. B 769 (2017) 134 [arXiv:1703.06269] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  32. [32]

    L. Shen, Y. Mou, Y. Zheng and M. Li, Direct couplings of mimetic dark matter and their cosmological effects, Chin. Phys. C 42 (2018) 015101 [arXiv:1710.03945] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    M.H. Abbassi, A. Jozani and H.R. Sepangi, Anisotropic Mimetic Cosmology, Phys. Rev. D 97 (2018) 123510 [arXiv:1803.00209] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    A. Casalino, M. Rinaldi, L. Sebastiani and S. Vagnozzi, Mimicking dark matter and dark energy in a mimetic model compatible with GW170817, Phys. Dark Univ. 22 (2018) 108 [arXiv:1803.02620] [INSPIRE].

    Article  Google Scholar 

  35. [35]

    S. Vagnozzi, Recovering a MOND-like acceleration law in mimetic gravity, Class. Quant. Grav. 34 (2017) 185006 [arXiv:1708.00603] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  36. [36]

    J. Dutta, W. Khyllep, E.N. Saridakis, N. Tamanini and S. Vagnozzi, Cosmological dynamics of mimetic gravity, JCAP 02 (2018) 041 [arXiv:1711.07290] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    O. Malaeb, Hamiltonian Formulation of Mimetic Gravity, Phys. Rev. D 91 (2015) 103526 [arXiv:1404.4195] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    M. Chaichian, J. Kluson, M. Oksanen and A. Tureanu, Mimetic dark matter, ghost instability and a mimetic tensor-vector-scalar gravity, JHEP 12 (2014) 102 [arXiv:1404.4008] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    K. Takahashi and T. Kobayashi, Extended mimetic gravity: Hamiltonian analysis and gradient instabilities, JCAP 11 (2017) 038 [arXiv:1708.02951] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    K. Hammer and A. Vikman, Many Faces of Mimetic Gravity, arXiv:1512.09118 [INSPIRE].

  41. [41]

    A. Golovnev, Beyond dRGT as mimetic massive gravity, Phys. Lett. B 779 (2018) 441 [arXiv:1801.07958] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  42. [42]

    S.D. Odintsov and V.K. Oikonomou, The reconstruction of f (ϕ)R and mimetic gravity from viable slow-roll inflation, Nucl. Phys. B 929 (2018) 79 [arXiv:1801.10529] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  43. [43]

    D. Langlois, M. Mancarella, K. Noui and F. Vernizzi, Mimetic gravity as DHOST theories, JCAP 02 (2019) 036 [arXiv:1802.03394] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  44. [44]

    H. Firouzjahi, M.A. Gorji, S.A. Hosseini Mansoori, A. Karami and T. Rostami, Two-field disformal transformation and mimetic cosmology, JCAP 11 (2018) 046 [arXiv:1806.11472] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. [45]

    L. Shen, Y. Zheng and M. Li, Two-field mimetic gravity revisited and Hamiltonian analysis, JCAP 12 (2019) 026 [arXiv:1909.01248] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    M.A. Gorji, S. Mukohyama, H. Firouzjahi and S.A. Hosseini Mansoori, Gauge Field Mimetic Cosmology, JCAP 08 (2018) 047 [arXiv:1807.06335] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. [47]

    S.A. Paston and A.A. Sheykin, Embedding theory as new geometrical mimetic gravity, Eur. Phys. J. C 78 (2018) 989 [arXiv:1806.10902] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    L. Sebastiani, S. Vagnozzi and R. Myrzakulov, Mimetic gravity: a review of recent developments and applications to cosmology and astrophysics, Adv. High Energy Phys. 2017 (2017) 3156915 [arXiv:1612.08661] [INSPIRE].

    Article  Google Scholar 

  49. [49]

    A. Ijjas, J. Ripley and P.J. Steinhardt, NEC violation in mimetic cosmology revisited, Phys. Lett. B 760 (2016) 132 [arXiv:1604.08586] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  50. [50]

    S. Ramazanov, F. Arroja, M. Celoria, S. Matarrese and L. Pilo, Living with ghosts in Hořava-Lifshitz gravity, JHEP 06 (2016) 020 [arXiv:1601.05405] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  51. [51]

    H. Firouzjahi, M.A. Gorji and S.A. Hosseini Mansoori, Instabilities in Mimetic Matter Perturbations, JCAP 07 (2017) 031 [arXiv:1703.02923] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. [52]

    Y. Zheng, L. Shen, Y. Mou and M. Li, On (in)stabilities of perturbations in mimetic models with higher derivatives, JCAP 08 (2017) 040 [arXiv:1704.06834] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    M.A. Gorji, S.A. Hosseini Mansoori and H. Firouzjahi, Higher Derivative Mimetic Gravity, JCAP 01 (2018) 020 [arXiv:1709.09988] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  54. [54]

    S. Hirano, S. Nishi and T. Kobayashi, Healthy imperfect dark matter from effective theory of mimetic cosmological perturbations, JCAP 07 (2017) 009 [arXiv:1704.06031] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. [55]

    Y.-F. Cai and X. Zhang, Primordial perturbation with a modified dispersion relation, Phys. Rev. D 80 (2009) 043520 [arXiv:0906.3341] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    LIGO Scientific and Virgo collaborations, GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].

  57. [57]

    Y.-F. Cai, F. Duplessis and E.N. Saridakis, F (R) nonlinear massive theories of gravity and their cosmological implications, Phys. Rev. D 90 (2014) 064051 [arXiv:1307.7150] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    Y.-F. Cai and E.N. Saridakis, Cosmology of F (R) nonlinear massive gravity, Phys. Rev. D 90 (2014) 063528 [arXiv:1401.4418] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    D. Langlois and K. Noui, Hamiltonian analysis of higher derivative scalar-tensor theories, JCAP 07 (2016) 016 [arXiv:1512.06820] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  60. [60]

    D. Blas, O. Pujolàs and S. Sibiryakov, On the Extra Mode and Inconsistency of Hořava Gravity, JHEP 10 (2009) 029 [arXiv:0906.3046] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    H. Gomes and D.C. Guariento, Hamiltonian analysis of the cuscuton, Phys. Rev. D 95 (2017) 104049 [arXiv:1703.08226] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  62. [62]

    A. De Felice, D. Langlois, S. Mukohyama, K. Noui and A. Wang, Generalized instantaneous modes in higher-order scalar-tensor theories, Phys. Rev. D 98 (2018) 084024 [arXiv:1803.06241] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  63. [63]

    X. Gao, Unifying framework for scalar-tensor theories of gravity, Phys. Rev. D 90 (2014) 081501 [arXiv:1406.0822] [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    X. Gao and Z.-B. Yao, Spatially covariant gravity with velocity of the lapse function: the Hamiltonian analysis, JCAP 05 (2019) 024 [arXiv:1806.02811] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    D. Langlois and K. Noui, Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability, JCAP 02 (2016) 034 [arXiv:1510.06930] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  66. [66]

    J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui and G. Tasinato, Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order, JHEP 12 (2016) 100 [arXiv:1608.08135] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  67. [67]

    P. Hořava, Quantum Gravity at a Lifshitz Point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  68. [68]

    A. Ganz, N. Bartolo and S. Matarrese, Towards a viable effective field theory of mimetic gravity, JCAP 12 (2019) 037 [arXiv:1907.10301] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yunlong Zheng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 1810.03826

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y. Hamiltonian analysis of Mimetic gravity with higher derivatives. J. High Energ. Phys. 2021, 85 (2021). https://doi.org/10.1007/JHEP01(2021)085

Download citation

Keywords

  • Classical Theories of Gravity
  • Cosmology of Theories beyond the SM