Gravitational memory effects and Bondi-Metzner-Sachs symmetries in scalar-tensor theories

Abstract

The relation between gravitational memory effects and Bondi-Metzner-Sachs symmetries of the asymptotically flat spacetimes is studied in the scalar-tensor theory. For this purpose, the solutions to the equations of motion near the future null infinity are obtained in the generalized Bondi-Sachs coordinates with a suitable determinant condition. It turns out that the Bondi-Metzner-Sachs group is also a semi-direct product of an infinite dimensional supertranslation group and the Lorentz group as in general relativity. There are also degenerate vacua in both the tensor and the scalar sectors in the scalar-tensor theory. The supertranslation relates the vacua in the tensor sector, while in the scalar sector, it is the Lorentz transformation that transforms the vacua to each other. So there are the tensor memory effects similar to the ones in general relativity, and the scalar memory effect, which is new. The evolution equations for the Bondi mass and angular momentum aspects suggest that the null energy fluxes and the angular momentum fluxes across the null infinity induce the transition among the vacua in the tensor and the scalar sectors, respectively.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    Y.B. Zel’dovich and A.G. Polnarev, Radiation of gravitational waves by a cluster of superdense stars, Sov. Astron. 18 (1974) 17 [Astron. Zh. 51 (1974) 30] [INSPIRE].

  2. [2]

    V.B. Braginsky and L.P. Grishchuk, Kinematic resonance and memory effect in free mass gravitational antennas, Sov. Phys. JETP 62 (1985) 427 [Zh. Eksp. Teor. Fiz. 89 (1985) 744] [INSPIRE].

  3. [3]

    D. Christodoulou, Nonlinear nature of gravitation and gravitational wave experiments, Phys. Rev. Lett. 67 (1991) 1486 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  4. [4]

    K.S. Thorne, Gravitational-wave bursts with memory: the Christodoulou effect, Phys. Rev. D 45 (1992) 520 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    A. Strominger and A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  6. [6]

    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. London A 269 (1962) 21.

  7. [7]

    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotical ly flat space-times, Proc. Roy. Soc. London A 270 (1962) 103.

  8. [8]

    R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  9. [9]

    A. Strominger, On BMS invariance of gravitational scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  10. [10]

    S. Pasterski, A. Strominger and A. Zhiboedov, New gravitational memories, JHEP 12 (2016) 053 [arXiv:1502.06120] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    A. Strominger, Lectures on the infrared structure of gravity and gauge theory, arXiv:1703.05448 [INSPIRE].

  12. [12]

    LIGO Scientific, Virgo collaboration, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    LIGO Scientific, Virgo collaboration, GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett. 116 (2016) 241103 [arXiv:1606.04855] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    LIGO Scientific, VIRGO collaboration, GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2, Phys. Rev. Lett. 118 (2017) 221101 [Erratum ibid. 121 (2018) 129901] [arXiv:1706.01812] [INSPIRE].

  15. [15]

    LIGO Scientific, Virgo collaboration, GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence, Phys. Rev. Lett. 119 (2017) 141101 [arXiv:1709.09660] [INSPIRE].

  16. [16]

    LIGO Scientific, Virgo collaboration, GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].

  17. [17]

    LIGO Scientific, Virgo collaboration, GW170608: observation of a 19-solar-mass binary black hole coalescence, Astrophys. J. 851 (2017) L35 [arXiv:1711.05578] [INSPIRE].

  18. [18]

    LIGO Scientific, Virgo collaboration, GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, Phys. Rev. X 9 (2019) 031040 [arXiv:1811.12907] [INSPIRE].

  19. [19]

    LIGO Scientific, Virgo collaboration, GW190425: observation of a compact binary coalescence with total mass ∼ 3.4Mʘ, Astrophys. J. Lett. 892 (2020) L3 [arXiv:2001.01761] [INSPIRE].

  20. [20]

    LIGO Scientific, Virgo collaboration, GW190412: observation of a binary-black-hole coalescence with asymmetric masses, Phys. Rev. D 102 (2020) 043015 [arXiv:2004.08342] [INSPIRE].

  21. [21]

    LIGO Scientific, Virgo collaboration, GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object, Astrophys. J. Lett. 896 (2020) L44 [arXiv:2006.12611] [INSPIRE].

  22. [22]

    LIGO Scientific, Virgo collaboration, GW190521: a binary black hole merger with a total mass of 150Mʘ, Phys. Rev. Lett. 125 (2020) 101102 [arXiv:2009.01075] [INSPIRE].

  23. [23]

    LIGO Scientific, Virgo collaboration, Properties and astrophysical implications of the 150 Mʘ binary black hole merger GW190521, Astrophys. J. Lett. 900 (2020) L13 [arXiv:2009.01190] [INSPIRE].

  24. [24]

    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) 516.

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    S.W. Hawking, M.J. Perry and A. Strominger, Soft hair on black holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    L. Donnay, G. Giribet, H.A. Gonzalez and M. Pino, Supertranslations and superrotations at the black hole horizon, Phys. Rev. Lett. 116 (2016) 091101 [arXiv:1511.08687] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    L. Donnay, G. Giribet, H.A. González and M. Pino, Extended symmetries at the black hole horizon, JHEP 09 (2016) 100 [arXiv:1607.05703] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    S.W. Hawking, M.J. Perry and A. Strominger, Superrotation charge and supertranslation hair on black holes, JHEP 05 (2017) 161 [arXiv:1611.09175] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  29. [29]

    S. Hou, Asymptotic symmetries of the null infinity and the isolated horizon, arXiv:1704.05701 [INSPIRE].

  30. [30]

    L. Donnay, G. Giribet, H.A. González and A. Puhm, Black hole memory effect, Phys. Rev. D 98 (2018) 124016 [arXiv:1809.07266] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    S.W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    N. Seto, Search for memory and inspiral gravitational waves from super-massive binary black holes with pulsar timing arrays, Mon. Not. Roy. Astron. Soc. 400 (2009) L38 [arXiv:0909.1379] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    J.B. Wang et al., Searching for gravitational wave memory bursts with the Parkes pulsar timing array, Mon. Not. Roy. Astron. Soc. 446 (2015) 1657 [arXiv:1410.3323] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    P.D. Lasky, E. Thrane, Y. Levin, J. Blackman and Y. Chen, Detecting gravitational-wave memory with LIGO: implications of GW150914, Phys. Rev. Lett. 117 (2016) 061102 [arXiv:1605.01415] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    L.O. McNeill, E. Thrane and P.D. Lasky, Detecting gravitational wave memory without parent signals, Phys. Rev. Lett. 118 (2017) 181103 [arXiv:1702.01759] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    A.D. Johnson, S.J. Kapadia, A. Osborne, A. Hixon and D. Kennefick, Prospects of detecting the nonlinear gravitational wave memory, Phys. Rev. D 99 (2019) 044045 [arXiv:1810.09563] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    M. Hübner, C. Talbot, P.D. Lasky and E. Thrane, Measuring gravitational-wave memory in the first LIGO/Virgo gravitational-wave transient catalog, Phys. Rev. D 101 (2020) 023011 [arXiv:1911.12496] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    O.M. Boersma, D.A. Nichols and P. Schmidt, Forecasts for detecting the gravitational-wave memory effect with Advanced LIGO and Virgo, Phys. Rev. D 101 (2020) 083026 [arXiv:2002.01821] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    D.R. Madison, Persistent astrometric deflections from gravitational-wave memory, Phys. Rev. Lett. 125 (2020) 041101 [arXiv:2007.12206] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    C. Brans and R.H. Dicke, Mach’s principle and a relativistic theory of gravitation, Phys. Rev. 124 (1961) 925 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  41. [41]

    G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  42. [42]

    D. Langlois and K. Noui, Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability, JCAP 02 (2016) 034 [arXiv:1510.06930] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. [43]

    D. Langlois and K. Noui, Hamiltonian analysis of higher derivative scalar-tensor theories, JCAP 07 (2016) 016 [arXiv:1512.06820] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  44. [44]

    J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui and G. Tasinato, Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order, JHEP 12 (2016) 100 [arXiv:1608.08135] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  45. [45]

    X. Gao, Unifying framework for scalar-tensor theories of gravity, Phys. Rev. D 90 (2014) 081501 [arXiv:1406.0822] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    X. Gao, Hamiltonian analysis of spatially covariant gravity, Phys. Rev. D 90 (2014) 104033 [arXiv:1409.6708] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    X. Gao and Z.-B. Yao, Spatially covariant gravity with velocity of the lapse function: the Hamiltonian analysis, JCAP 05 (2019) 024 [arXiv:1806.02811] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    C.M. Will, The confrontation between general relativity and experiment, Living Rev. Rel. 17 (2014) 4 [arXiv:1403.7377] [INSPIRE].

    MATH  Article  Google Scholar 

  49. [49]

    D. Liang, Y. Gong, S. Hou and Y. Liu, Polarizations of gravitational waves in f (R) gravity, Phys. Rev. D 95 (2017) 104034 [arXiv:1701.05998] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. [50]

    S. Hou, Y. Gong and Y. Liu, Polarizations of gravitational waves in Horndeski theory, Eur. Phys. J. C 78 (2018) 378 [arXiv:1704.01899] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    Y. Gong and S. Hou, The polarizations of gravitational waves, Universe 4 (2018) 85 [arXiv:1806.04027] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    S.J. Fletcher and A.W.C. Lun, The Kerr spacetime in generalized Bondi-Sachs coordinates, Class. Quant. Grav. 20 (2003) 4153.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  53. [53]

    S. Hou and Z.-H. Zhu, “Conserved charges” of the Bondi-Metzner-Sachs algebra in Brans-Dicke theory, arXiv:2008.05154 [INSPIRE].

  54. [54]

    R.M. Wald and A. Zoupas, A general definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE].

  55. [55]

    R. Penrose, Asymptotic properties of fields and space-times, Phys. Rev. Lett. 10 (1963) 66 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  56. [56]

    R. Penrose, Zero rest mass fields including gravitation: asymptotic behavior, Proc. Roy. Soc. London A 284 (1965) 159.

    ADS  MATH  Article  Google Scholar 

  57. [57]

    S. Tahura, D.A. Nichols, A. Saffer, L.C. Stein and K. Yagi, Brans-Dicke theory in Bondi-Sachs form: asymptotically flat solutions, asymptotic symmetries and gravitational-wave memory effects, arXiv:2007.13799 [INSPIRE].

  58. [58]

    D.A. Nichols, Center-of-mass angular momentum and memory effect in asymptotically flat spacetimes, Phys. Rev. D 98 (2018) 064032 [arXiv:1807.08767] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  59. [59]

    P.-M. Zhang, C. Duval, G.W. Gibbons and P.A. Horvathy, The memory effect for plane gravitational waves, Phys. Lett. B 772 (2017) 743 [arXiv:1704.05997] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  60. [60]

    P.-M. Zhang, C. Duval, G.W. Gibbons and P.A. Horvathy, Soft gravitons and the memory effect for plane gravitational waves, Phys. Rev. D 96 (2017) 064013 [arXiv:1705.01378] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  61. [61]

    P.M. Zhang, C. Duval, G.W. Gibbons and P.A. Horvathy, Velocity memory effect for polarized gravitational waves, JCAP 05 (2018) 030 [arXiv:1802.09061] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  62. [62]

    R.N. Lang, Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order, Phys. Rev. D 89 (2014) 084014 [arXiv:1310.3320] [INSPIRE].

  63. [63]

    R.N. Lang, Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux, Phys. Rev. D 91 (2015) 084027 [arXiv:1411.3073] [INSPIRE].

  64. [64]

    S.M. Du and A. Nishizawa, Gravitational wave memory: a new approach to study modified gravity, Phys. Rev. D 94 (2016) 104063 [arXiv:1609.09825] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    K. Koyama, Testing Brans-Dicke gravity with screening by scalar gravitational wave memory, Phys. Rev. D 102 (2020) 021502 [arXiv:2006.15914] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  66. [66]

    E. Kilicarslan and B. Tekin, Graviton mass and memory, Eur. Phys. J. C 79 (2019) 114 [arXiv:1805.02240] [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    E. Kilicarslan, Weak field limit of infinite derivative gravity, Phys. Rev. D 98 (2018) 064048 [arXiv:1808.00266] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  68. [68]

    E. Kilicarslan, On memory effect in modified gravity theories, Turk. J. Phys. 43 (2019) 126 [arXiv:1811.00843] [INSPIRE].

    Article  Google Scholar 

  69. [69]

    R.M. Wald, General relativity, University of Chicago Press, Chicago U.S.A. (1984).

    Google Scholar 

  70. [70]

    J.M. Martín-García, xAct: efficient tensor computer algebra for the Wolfram Language, http://www.xact.es/.

  71. [71]

    S. Hou and Y. Gong, Constraints on Horndeski theory using the observations of Nordtvedt effect, Shapiro time delay and binary pulsars, Eur. Phys. J. C 78 (2018) 247 [arXiv:1711.05034] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    J. Alsing, E. Berti, C.M. Will and H. Zaglauer, Gravitational radiation from compact binary systems in the massive Brans-Dicke theory of gravity, Phys. Rev. D 85 (2012) 064041 [arXiv:1112.4903] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    J.D. Barrow and K.-i. Maeda, Extended inflationary universes, Nucl. Phys. B 341 (1990) 294 [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified gravity and cosmology, Phys. Rept. 513 (2012) 1 [arXiv:1106.2476] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  75. [75]

    C. Baccigalupi, S. Matarrese and F. Perrotta, Tracking extended quintessence, Phys. Rev. D 62 (2000) 123510 [astro-ph/0005543] [INSPIRE].

  76. [76]

    A. Riazuelo and J.-P. Uzan, Cosmological observations in scalar-tensor quintessence, Phys. Rev. D 66 (2002) 023525 [astro-ph/0107386] [INSPIRE].

  77. [77]

    P. Brax, C. van de Bruck, A.-C. Davis, J. Khoury and A. Weltman, Detecting dark energy in orbit: the cosmological chameleon, Phys. Rev. D 70 (2004) 123518 [astro-ph/0408415] [INSPIRE].

  78. [78]

    J. O’Hanlon, Intermediate-range gravity - a generally covariant model, Phys. Rev. Lett. 29 (1972) 137 [INSPIRE].

    ADS  Article  Google Scholar 

  79. [79]

    P. Teyssandier and P. Tourrenc, The Cauchy problem for the R + R2 theories of gravity without torsion, J. Math. Phys. 24 (1983) 2793 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  80. [80]

    T.P. Sotiriou and V. Faraoni, f (R) theories of gravity, Rev. Mod. Phys. 82 (2010) 451 [arXiv:0805.1726] [INSPIRE].

  81. [81]

    G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010) 062 [arXiv:1001.1541] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  82. [82]

    M. Hohmann, Parametrized post-Newtonian limit of Horndeski’s gravity theory, Phys. Rev. D 92 (2015) 064019 [arXiv:1506.04253] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  83. [83]

    E.E. Flanagan and D.A. Nichols, Conserved charges of the extended Bondi-Metzner-Sachs algebra, Phys. Rev. D 95 (2017) 044002 [arXiv:1510.03386] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  84. [84]

    T. Mädler and J. Winicour, Bondi-Sachs formalism, Scholarpedia 11 (2016) 33528 [arXiv:1609.01731] [INSPIRE].

    ADS  Article  Google Scholar 

  85. [85]

    R. Geroch, Asymptotic structure of space-time, in Asymptotic structure of space-time, F.P. Esposito and L. Witten eds., Springer, Germany (1977).

  86. [86]

    A. Ashtekar, Radiative degrees of freedom of the gravitational field in exact general relativity, J. Math. Phys. 22 (1981) 2885 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  87. [87]

    R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].

  88. [88]

    J.M. Overduin and P.S. Wesson, Kaluza-Klein gravity, Phys. Rept. 283 (1997) 303 [gr-qc/9805018] [INSPIRE].

  89. [89]

    K. Tanabe, N. Tanahashi and T. Shiromizu, On asymptotic structure at null infinity in five dimensions, J. Math. Phys. 51 (2010) 062502 [arXiv:0909.0426] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  90. [90]

    K. Tanabe, S. Kinoshita and T. Shiromizu, Asymptotic flatness at null infinity in arbitrary dimensions, Phys. Rev. D 84 (2011) 044055 [arXiv:1104.0303] [INSPIRE].

    ADS  Article  Google Scholar 

  91. [91]

    S. Hollands and A. Thorne, Bondi mass cannot become negative in higher dimensions, Commun. Math. Phys. 333 (2015) 1037 [arXiv:1307.1603] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  92. [92]

    S. Hollands, A. Ishibashi and R.M. Wald, BMS supertranslations and memory in four and higher dimensions, Class. Quant. Grav. 34 (2017) 155005 [arXiv:1612.03290] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  93. [93]

    Y. Gong and S. Hou, Gravitational wave polarizations in f (R) gravity and scalar-tensor theory, EPJ Web Conf. 168 (2018) 01003 [arXiv:1709.03313] [INSPIRE].

    Article  Google Scholar 

  94. [94]

    S. Hou and Y. Gong, Strong equivalence principle and gravitational wave polarizations in Horndeski theory, Eur. Phys. J. C 79 (2019) 197 [arXiv:1810.00630] [INSPIRE].

    ADS  Article  Google Scholar 

  95. [95]

    M. Isi, A.J. WEinstein, C. Mead and M. Pitkin, Detecting Beyond-Einstein polarizations of continuous gravitational waves, Phys. Rev. D 91 (2015) 082002 [arXiv:1502.00333] [INSPIRE].

    ADS  Article  Google Scholar 

  96. [96]

    M. Isi and A.J. WEinstein, Probing gravitational wave polarizations with signals from compact binary coalescences, arXiv:1710.03794 [INSPIRE].

  97. [97]

    T. Banks, A critique of pure string theory: heterodox opinions of diverse dimensions, hep-th/0306074 [INSPIRE].

  98. [98]

    G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett. 105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  99. [99]

    G. Barnich and C. Troessaert, Supertranslations call for superrotations, PoS(CNCFG2010)010 [arXiv:1102.4632] [INSPIRE].

  100. [100]

    G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213] [INSPIRE].

  101. [101]

    D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Semiclassical Virasoro symmetry of the quantum gravity S -matrix, JHEP 08 (2014) 058 [arXiv:1406.3312] [INSPIRE].

    ADS  Article  Google Scholar 

  102. [102]

    G. Compère, A. Fiorucci and R. Ruzziconi, Superboost transitions, refraction memory and super-Lorentz charge algebra, JHEP 11 (2018) 200 [Erratum ibid. 04 (2020) 172] [arXiv:1810.00377] [INSPIRE].

  103. [103]

    R. Ruzziconi, Asymptotic Symmetries in the Gauge Fixing Approach and the BMS Group, PoS(Modave2019)003 [arXiv:1910.08367] [INSPIRE].

  104. [104]

    E. Newman and R. Penrose, An approach to gravitational radiation by a method of spin coefficients, J. Math. Phys. 3 (1962) 566 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  105. [105]

    E.T. Newman and R. Penrose, New conservation laws for zero rest-mass fields in asymptotically flat space-time, Proc. Roy. Soc. London A 305 (1968) 175.

    ADS  Article  Google Scholar 

  106. [106]

    L. Ryder, Quantum field theory, Cambridge University Press, Cambridge U.K. (1996).

    Google Scholar 

  107. [107]

    L. Bieri and D. Garfinkle, Perturbative and gauge invariant treatment of gravitational wave memory, Phys. Rev. D 89 (2014) 084039 [arXiv:1312.6871] [INSPIRE].

    ADS  Article  Google Scholar 

  108. [108]

    S.W. Hawking, Black holes in the Brans-Dicke theory of gravitation, Commun. Math. Phys. 25 (1972) 167 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  109. [109]

    T.P. Sotiriou and V. Faraoni, Black holes in scalar-tensor gravity, Phys. Rev. Lett. 108 (2012) 081103 [arXiv:1109.6324] [INSPIRE].

    ADS  Article  Google Scholar 

  110. [110]

    S.J. Kovacs and K.S. Thorne, The generation of gravitational waves. 3. Derivation of Bremsstrahlung formulas, Astrophys. J. 217 (1977) 252 [INSPIRE].

  111. [111]

    K.S. Thorne and S.J. Kovacs, The generation of gravitational waves. I. Weak-field sources, Astrophys. J. 200 (1975) 245.

  112. [112]

    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  113. [113]

    M. Campiglia, L. Coito and S. Mizera, Can scalars have asymptotic symmetries?, Phys. Rev. D 97 (2018) 046002 [arXiv:1703.07885] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  114. [114]

    F. Cachazo and A. Strominger, Evidence for a new soft graviton theorem, arXiv:1404.4091 [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zong-Hong Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2005.01310

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, S., Zhu, ZH. Gravitational memory effects and Bondi-Metzner-Sachs symmetries in scalar-tensor theories. J. High Energ. Phys. 2021, 83 (2021). https://doi.org/10.1007/JHEP01(2021)083

Download citation

Keywords

  • Classical Theories of Gravity
  • Gauge Symmetry
  • Space-Time Symmetries