Skip to main content

Wilson-’t Hooft lines as transfer matrices

A preprint version of the article is available at arXiv.

Abstract

We establish a correspondence between a class of Wilson-’t Hooft lines in four-dimensional \( \mathcal{N} \) = 2 supersymmetric gauge theories described by circular quivers and transfer matrices constructed from dynamical L-operators for trigonometric quantum integrable systems. We compute the vacuum expectation values of the Wilson-’t Hooft lines in a twisted product space S1 × ϵ2 × ℝ by supersymmetric localization and show that they are equal to the Wigner transforms of the transfer matrices. A variant of the AGT correspondence implies an identification of the transfer matrices with Verlinde operators in Toda theory, which we also verify. We explain how these field theory setups are related to four-dimensional Chern-Simons theory via embedding into string theory and dualities.

References

  1. [1]

    M. Bullimore, M. Fluder, L. Hollands and P. Richmond, The superconformal index and an elliptic algebra of surface defects, JHEP 10 (2014) 062 [arXiv:1401.3379] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    K. Maruyoshi and J. Yagi, Surface defects as transfer matrices, PTEP 2016 (2016) 113B01 [arXiv:1606.01041] [INSPIRE].

  3. [3]

    J. Yagi, Surface defects and elliptic quantum groups, JHEP 06 (2017) 013 [arXiv:1701.05562] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].

  5. [5]

    K. Hasegawa, Ruijsenaars’ commuting difference operators as commuting transfer matrices, Comm. Math. Phys. 187 (1997) 289.

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    R.J. Baxter, Eight vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. 2. Equivalence to a generalized ice-type lattice model, Annals Phys. 76 (1973) 25 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    M. Jimbo, T. Miwa and M. Okado, Solvable lattice models whose states are dominant integral weights of \( {A}_{n-1}^{(1)} \), Lett. Math. Phys. 14 (1987) 123.

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    M. Jimbo, T. Miwa and M. Okado, Local state probabilities of solvable lattice models: an \( {A}_{n-1}^{(1)} \) family, Nucl. Phys. B 300 (1988) 74 [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017) 440301 [arXiv:1608.02952] [INSPIRE].

  10. [10]

    Y. Ito, T. Okuda and M. Taki, Line operators on S1 × R3 and quantization of the Hitchin moduli space, JHEP 04 (2012) 010 [Erratum ibid. 03 (2016) 085] [arXiv:1111.4221] [INSPIRE].

  11. [11]

    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    N. Wyllard, AN − 1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge theory loop operators and Liouville theory, JHEP 02 (2010) 057 [arXiv:0909.1105] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    J. Gomis and B. Le Floch, ’t Hooft operators in gauge theory from Toda CFT, JHEP 11 (2011) 114 [arXiv:1008.4139] [INSPIRE].

  16. [16]

    E.P. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B 300 (1988) 360 [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    K. Costello, Supersymmetric gauge theory and the Yangian, arXiv:1303.2632 [INSPIRE].

  18. [18]

    K. Costello, E. Witten and M. Yamazaki, Gauge theory and integrability, I, ICCM Not. 06 (2018) 46 [arXiv:1709.09993] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  19. [19]

    K. Costello and J. Yagi, Unification of integrability in supersymmetric gauge theories, arXiv:1810.01970 [INSPIRE].

  20. [20]

    G. Felder, Elliptic quantum groups, in 11th international conference on mathematical physics (ICMP-11) (satellite colloquia: new problems in the general theory of fields and particles, Paris, France, 25–28 July 1994, pg. 211 [hep-th/9412207] [INSPIRE].

  21. [21]

    G. Felder, Conformal field theory and integrable systems associated to elliptic curves, in Proceedings of the international congress of mathematicians, Birkhäuser, Basel, Switzerland (1995), pg. 1247 [hep-th/9407154] [INSPIRE].

  22. [22]

    P. Etingof and A. Varchenko, Solutions of the quantum dynamical Yang-Baxter equation and dynamical quantum groups, Commun. Math. Phys. 196 (1998) 591 [q-alg/9708015].

  23. [23]

    J.-L. Gervais and A. Neveu, Novel triangle relation and absence of tachyons in Liouville string field theory, Nucl. Phys. B 238 (1984) 125 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    R.J. Baxter, Eight-vertex model in lattice statistics, Phys. Rev. Lett. 26 (1971) 832 [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    R.J. Baxter, Partition function of the eight vertex lattice model, Annals Phys. 70 (1972) 193 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    A.A. Belavin, Dynamical symmetry of integrable quantum systems, Nucl. Phys. B 180 (1981) 189 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    V.V. Bazhanov and S.M. Sergeev, A master solution of the quantum Yang-Baxter equation and classical discrete integrable equations, Adv. Theor. Math. Phys. 16 (2012) 65 [arXiv:1006.0651] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  28. [28]

    V.V. Bazhanov and S.M. Sergeev, Elliptic gamma-function and multi-spin solutions of the Yang-Baxter equation, Nucl. Phys. B 856 (2012) 475 [arXiv:1106.5874] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    T.D. Brennan and G.W. Moore, Index-like theorems from line defect vevs, JHEP 09 (2019) 073 [arXiv:1903.08172] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    T.D. Brennan, A. Dey and G.W. Moore, On ’t Hooft defects, monopole bubbling and supersymmetric quantum mechanics, JHEP 09 (2018) 014 [arXiv:1801.01986] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    T.D. Brennan, Monopole bubbling via string theory, JHEP 11 (2018) 126 [arXiv:1806.00024] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    T.D. Brennan, A. Dey and G.W. Moore, ’t Hooft defects and wall crossing in SQM, JHEP 10 (2019) 173 [arXiv:1810.07191] [INSPIRE].

  34. [34]

    B. Assel and A. Sciarappa, On monopole bubbling contributions to ’t Hooft loops, JHEP 05 (2019) 180 [arXiv:1903.00376] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    S.N.M. Ruijsenaars, Complete integrability of relativistic Calogero-Moser systems and elliptic function identities, Commun. Math. Phys. 110 (1987) 191 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems, and the WKB approximation, arXiv:0907.3987 [INSPIRE].

  38. [38]

    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    J. Yagi, Ω-deformation and quantization, JHEP 08 (2014) 112 [arXiv:1405.6714] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    S. Hellerman, D. Orlando and S. Reffert, String theory of the Ω deformation, JHEP 01 (2012) 148 [arXiv:1106.0279] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Ota.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2009.12391

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maruyoshi, K., Ota, T. & Yagi, J. Wilson-’t Hooft lines as transfer matrices. J. High Energ. Phys. 2021, 72 (2021). https://doi.org/10.1007/JHEP01(2021)072

Download citation

Keywords

  • Brane Dynamics in Gauge Theories
  • Lattice Integrable Models
  • Supersymmetric Gauge Theory