Skip to main content

A cosmic microscope for the preheating era

A preprint version of the article is available at arXiv.

Abstract

Light fields with spatially varying backgrounds can modulate cosmic preheating, and imprint the nonlinear effects of preheating dynamics at tiny scales on large scale fluctuations. This provides us a unique probe into the preheating era which we dub the “cosmic microscope”. We identify a distinctive effect of preheating on scalar perturbations that turns the Gaussian primordial fluctuations of a light scalar field into square waves, like a diode. The effect manifests itself as local non-Gaussianity. We present a model, “modulated partial preheating”, where this nonlinear effect is consistent with current observations and can be reached by near future cosmic probes.

References

  1. L.F. Abbott, E. Farhi and M.B. Wise, Particle Production in the New Inflationary Cosmology, Phys. Lett. B 117 (1982) 29 [INSPIRE].

    ADS  Google Scholar 

  2. A.D. Dolgov and A.D. Linde, Baryon Asymmetry in Inflationary Universe, Phys. Lett. B 116 (1982) 329 [INSPIRE].

    ADS  Google Scholar 

  3. A. Albrecht, P.J. Steinhardt, M.S. Thrner and F. Wilczek, Reheating an Inflationary Universe, Phys. Rev. Lett. 48 (1982) 1437 [INSPIRE].

    ADS  Google Scholar 

  4. J.H. Traschen and R.H. Brandenberger, Particle Production During Out-of-equilibrium Phase Transitions, Phys. Rev. D 42 (1990) 2491 [INSPIRE].

    ADS  Google Scholar 

  5. A.D. Dolgov and D.P. Kirilova, On particle creation by a time dependent scalar field, Sov. J. Nucl. Phys. 51 (1990) 172 [INSPIRE].

    Google Scholar 

  6. Y. Shtanov, J.H. Traschen and R.H. Brandenberger, Universe reheating after inflation, Phys. Rev. D 51 (1995) 5438 [hep-ph/9407247] [INSPIRE].

    ADS  Google Scholar 

  7. L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett. 73 (1994) 3195 [hep-th/9405187] [INSPIRE].

    ADS  Google Scholar 

  8. D. Boyanovsky, M. D’Attanasio, H.J. de Vega, R. Holman, D.-S. Lee and A. Singh, Reheating the postinflationary universe, hep-ph/9505220 [INSPIRE].

  9. M. Yoshimura, Catastrophic particle production under periodic perturbation, Frog. Theor. Phys. 94 (1995) 873 [hep-th/9506176] [INSPIRE].

    ADS  Google Scholar 

  10. D.L Kaiser, Post inflation reheating in an expanding universe, Phys. Rev. D 53 (1996) 1776 [astro-ph/9507108] [INSPIRE].

  11. L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev. D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].

  12. K.D. Lozanov, Lectures on Reheating after Inflation, arXiv:1907.04402 [INSPIRE].

  13. S. Lu, Y. Wang and Z.-Z. Xianyu, A Cosmological Higgs Collider, JHEP 02 (2020) 011 [arXiv:1907.07390] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  14. G. Dvali, A. Gruzinov and M. Zaldarriaga, A new mechanism for generating density perturbations from inflation, Phys. Rev. D 69 (2004) 023505 [astro-ph/0303591] [INSPIRE].

  15. L. Kofman, Probing string theory with modulated cosmological fluctuations, astro-ph/0303614 [INSPIRE].

  16. T. Suyama and M. Yamaguchi, Non-Gaussianity in the modulated reheating scenario, Phys. Rev. D 77 (2008) 023505 [arXiv:0709.2545] [INSPIRE].

    ADS  Google Scholar 

  17. K. Ichikawa, T. Suyama, T. Takahashi and M. Yamaguchi, Primordial Curvature Fluctuation and Its Non-Gaussianity in Models with Modulated Reheating, Phys. Rev. D 78 (2008) 063545 [arXiv:0807.3988] [INSPIRE].

    ADS  Google Scholar 

  18. K. Kohri, D.H. Lyth and C.A. Valenzuela-Toledo, Preheating and the non-Gaussianity of the curvature perturbation, JCAP 02 (2010) 023 [Erratum JCAP 09 (2010) E01] [arXiv:0904.0793] [INSPIRE].

  19. K. Enqvist and S. Rusak, Modulated preheating and isocurvature perturbations, JCAP 03 (2013) 017 [arXiv:1210.2192] [INSPIRE].

    ADS  Google Scholar 

  20. A. Mazumdar and K.P. Modak, Constraints on variations in inflaton decay rate from modulated preheating, JCAP 06 (2016) 030 [arXiv:1506.01469] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  21. K. Enqvist, A. Jokinen, A. Mazumdar, T. Multamaki and A. Vaihkonen, Non-Gaussianity from preheating, Phys. Rev. Lett. 94 (2005) 161301 [astro-ph/0411394] [INSPIRE].

  22. K. Enqvist, A. Jokinen, A. Mazumdar, T. Multamaki and A. Vaihkonen, Non-Gaussianity from instant and tachyonic preheating, JCAP 03 (2005) 010 [hep-ph/0501076] [INSPIRE].

  23. A. Chambers and A. Rajantie, Lattice calculation of non-Gaussianity from preheating, Phys. Rev. Lett. 100 (2008) 041302 [Erratum ibid. 101 (2008) 149903] [arXiv:0710.4133] [INSPIRE].

  24. J. Bond, A.V. Frolov, Z. Huang and L. Kofman, Non-Gaussian Spikes from Chaotic Billiards in Inflation Preheating, Phys. Rev. Lett. 103 (2009) 071301 [arXiv:0903.3407] [INSPIRE].

    ADS  Google Scholar 

  25. A. Chambers, S. Nurmi and A. Rajantie, Non-Gaussianity from resonant curvaton decay, JCAP 01 (2010) 012 [arXiv:0909.4535] [INSPIRE].

    ADS  Google Scholar 

  26. M.A. Amin, M.P. Hertzberg, D.I. Kaiser and J. Karouby, Nonperturbative Dynamics Of Reheating After Inflation: A Review, Int. J. Mod. Phys. D 24 (2014) 1530003 [arXiv:1410.3808] [INSPIRE].

    ADS  MATH  Google Scholar 

  27. J.F. Dufaux, G.N. Felder, L. Kofman, M. Peloso and D. Podolsky, Preheating with trilinear interactions: Tachyonic resonance, JCAP 07 (2006) 006 [hep-ph/0602144] [INSPIRE].

  28. A.A. Starobinsky, Multicomponent de Sitter (Inflationary) Stages and the Generation of Perturbations, JETP Lett. 42 (1985) 152 [Pisma Zh. Eksp. Teor. Fiz. 42 (1985) 124] [INSPIRE].

  29. M. Sasaki and E.D. Stewart, A General analytic formula for the spectral index of the density perturbations produced during inflation, Prog. Theor. Phys. 95 (1996) 71 [astro-ph/9507001] [INSPIRE].

  30. D.H. Lyth, K.A. Malik and M. Sasaki, A General proof of the conservation of the curvature perturbation, JCAP 05 (2005) 004 [astro-ph/0411220] [INSPIRE].

  31. Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641 (2020) A10 [arXiv:1807.06211] [INSPIRE].

  32. A.A. Abolhasani, H. Firouzjahi and M.M. Sheikh-Jabbari, Tachyonic Resonance Preheating in Expanding Universe, Phys. Rev. D 81 (2010) 043524 [arXiv:0912.1021] [INSPIRE].

    ADS  Google Scholar 

  33. M.A. Amin, J. Fan, K.D. Lozanov and M. Reece, Cosmological dynamics of Higgs potential fine tuning, Phys. Rev. D 99 (2019) 035008 [arXiv:1802.00444] [INSPIRE].

    ADS  Google Scholar 

  34. E. Nelson and S. Shandera, Statistical Naturalness and non-Gaussianity in a Finite Universe, Phys. Rev. Lett. 110 (2013) 131301 [arXiv:1212.4550] [INSPIRE].

    ADS  Google Scholar 

  35. T. Suyama and S. Yokoyama, Statistics of general functions of a Gaussian field-application to non-Gaussianity from preheating, JCAP 06 (2013) 018 [arXiv:1303.1254] [INSPIRE].

    ADS  Google Scholar 

  36. W.H. Press and P. Schechter, Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation, Astrophys. J. 187 (1974) 425 [INSPIRE].

    ADS  Google Scholar 

  37. S. Ferraro, K.M. Smith, D. Green and D. Baumann, On the Equivalence of Barrier Crossing, Peak-Background Split, and Local Biasing, Mon. Not. Roy. Astron. Soc. 435 (2013) 934 [arXiv:1209.2175] [INSPIRE].

    ADS  Google Scholar 

  38. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

  39. E. Komatsu and D.N. Spergel, Acoustic signatures in the primary microwave background bispectrum, Phys. Rev. D 63 (2001) 063002 [astro-ph/0005036] [INSPIRE].

  40. K. Abazajian et al., CMB-S4 Science Case, Reference Design, and Project Plan, arXiv:1907.04473 [INSPIRE].

  41. Planck collaboration, Planck 2018 results. IX. Constraints on primordial non-Gaussianity, Astron. Astrophys. 641 (2020) A9 [arXiv:1905.05697] [INSPIRE].

  42. X. Chen and Y. Wang, Quasi-Single Field Inflation and Non-Gaussianities, JCAP 04 (2010) 027 [arXiv:0911.3380] [INSPIRE].

    ADS  Google Scholar 

  43. D. Baumann and D. Green, Signatures of Supersymmetry from the Early Universe, Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].

    ADS  Google Scholar 

  44. T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP 06 (2013) 051 [arXiv:1211.1624] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  45. N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].

  46. X. Chen, Y. Wang and Z.-Z. Xianyu, Loop Corrections to Standard Model Fields in Inflation, JHEP 08 (2016) 051 [arXiv:1604.07841] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  47. H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a Particle Detector, JHEP 12 (2016) 040 [arXiv:1607.03735] [INSPIRE].

    ADS  MATH  Google Scholar 

  48. P.D. Meerburg, M. Münchmeyer, J.B. Muñoz and X. Chen, Prospects for Cosmological Collider Physics, JCAP 03 (2017) 050 [arXiv:1610.06559] [INSPIRE].

    ADS  Google Scholar 

  49. X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model Background of the Cosmological Collider, Phys. Rev. Lett. 118 (2017) 261302 [arXiv:1610.06597] [INSPIRE].

    ADS  Google Scholar 

  50. X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model Mass Spectrum in Inflationary Universe, JHEP 04 (2017) 058 [arXiv:1612.08122] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  51. H. An, M. McAneny, A.K. Ridgway and M.B. Wise, Quasi Single Field Inflation in the non-perturbative regime, JHEP 06 (2018) 105 [arXiv:1706.09971] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  52. S. Kumar and R. Sundrum, Heavy-Lifting of Gauge Theories By Cosmic Inflation, JHEP 05 (2018) 011 [arXiv:1711.03988] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  53. X. Chen, Y. Wang and Z.-Z. Xianyu, Neutrino Signatures in Primordial Non-Gaussianities, JHEP 09 (2018) 022 [arXiv:1805.02656] [INSPIRE].

    ADS  Google Scholar 

  54. Y.-P. Wu, Higgs as heavy-lifted physics during inflation, JHEP 04 (2019) 125 [arXiv:1812.10654] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  55. L. Li, T. Nakama, C.M. Sou, Y. Wang and S. Zhou, Gravitational Production of Superheavy Dark Matter and Associated Cosmological Signatures, JHEP 07 (2019) 067 [arXiv:1903.08842] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  56. A. Hook, J. Huang and D. Racco, Searches for other vacua. Part II. A new Higgstory at the cosmological collider, JHEP 01 (2020) 105 [arXiv:1907.10624] [INSPIRE].

  57. A. Hook, J. Huang and D. Racco, Minimal signatures of the Standard Model in non-Gaussianities, Phys. Rev. D 101 (2020) 023519 [arXiv:1908.00019] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  58. S. Kumar and R. Sundrum, Cosmological Collider Physics and the Curvaton, JHEP 04 (2020) 077 [arXiv:1908.11378] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  59. L.-T. Wang and Z.-Z. Xianyu, In Search of Large Signals at the Cosmological Collider, JHEP 02 (2020) 044 [arXiv:1910.12876] [INSPIRE].

    ADS  Google Scholar 

  60. Y. Wang and Y. Zhu, Cosmological Collider Signatures of Massive Vectors from Non-Gaussian Gravitational Waves, JCAP 04 (2020) 049 [arXiv:2001.03879] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  61. L. Li, S. Lu, Y. Wang and S. Zhou, Cosmological Signatures of Superheavy Dark Matter, JHEP 07 (2020) 231 [arXiv:2002.01131] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  62. L.-T. Wang and Z.-Z. Xianyu, Gauge Boson Signals at the Cosmological Collider, JHEP 11 (2020) 082 [arXiv:2004.02887] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  63. G.N. Felder and I. Tkachev, LATTICEEASY: A Program for lattice simulations of scalar fields in an expanding universe, Comput. Phys. Commun. 178 (2008) 929 [hep-ph/0011159] [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhong-Zhi Xianyu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2005.12278

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Xianyu, ZZ. A cosmic microscope for the preheating era. J. High Energ. Phys. 2021, 21 (2021). https://doi.org/10.1007/JHEP01(2021)021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2021)021

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM