Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Chiral Froggatt-Nielsen models, gauge anomalies and flavourful axions

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 30 January 2020
  • Volume 2020, article number 191, (2020)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Chiral Froggatt-Nielsen models, gauge anomalies and flavourful axions
Download PDF
  • Q. Bonnefoy  ORCID: orcid.org/0000-0002-1102-52091,
  • E. Dudas2 &
  • S. Pokorski3 
  • 441 Accesses

  • 4 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We study UV-complete Froggatt-Nielsen-like models for the generation of mass and mixing hierarchies, assuming that the integrated heavy fields are chiral with respect to an abelian Froggatt-Nielsen symmetry. It modifies the mixed anomalies with respect to the Standard Model gauge group, which opens up the possibility to gauge the Froggatt-Nielsen symmetry without the need to introduce additional spectator fermions, while keeping mass matrices usually associated to anomalous flavour symmetries. We give specific examples where this happens, and we study the flavourful axion which arises from an accidental Peccei-Quinn symmetry in some of those models. Such an axion is typically more coupled to matter than in models with spectator fermions.

Article PDF

Download to read the full article text

Similar content being viewed by others

Axion couplings in gauged U(1)′ extensions of the Standard Model

Article Open access 13 March 2023

Natural axion model from flavour

Article Open access 21 September 2020

U(1) flavour symmetries as Peccei-Quinn symmetries

Article Open access 20 February 2019
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  2. S. Dimopoulos, Natural Generation of Fermion Masses, Phys. Lett. 129B (1983) 417 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  3. M. Leurer, Y. Nir and N. Seiberg, Mass matrix models, Nucl. Phys. B 398 (1993) 319 [hep-ph/9212278] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. M. Leurer, Y. Nir and N. Seiberg, Mass matrix models: The Sequel, Nucl. Phys. B 420 (1994) 468 [hep-ph/9310320] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  5. A. Davidson and K.C. Wali, Minimal flavor unification via multigenerational Peccei-Quinn symmetry, Phys. Rev. Lett. 48 (1982) 11 [INSPIRE].

    Article  ADS  Google Scholar 

  6. F. Wilczek, Axions and Family Symmetry Breaking, Phys. Rev. Lett. 49 (1982) 1549 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  7. Y. Ema, K. Hamaguchi, T. Moroi and K. Nakayama, Flaxion: a minimal extension to solve puzzles in the standard model, JHEP 01 (2017) 096 [arXiv:1612.05492] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. L. Calibbi, F. Goertz, D. Redigolo, R. Ziegler and J. Zupan, Minimal axion model from flavor, Phys. Rev. D 95 (2017) 095009 [arXiv:1612.08040] [INSPIRE].

    ADS  Google Scholar 

  9. Y. Ema, D. Hagihara, K. Hamaguchi, T. Moroi and K. Nakayama, Supersymmetric Flaxion, JHEP 04 (2018) 094 [arXiv:1802.07739] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  10. A. Davidson, V.P. Nair and K.C. Wali, Peccei-Quinn Symmetry as Flavor Symmetry and Grand Unification, Phys. Rev. D 29 (1984) 1504 [INSPIRE].

    ADS  Google Scholar 

  11. A. Davidson and M.A.H. Vozmediano, Domain walls: horizontal epilogue, Phys. Lett. 141B (1984) 177 [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Davidson and M.A.H. Vozmediano, The Horizontal Axion Alternative: The Interplay of Vacuum Structure and Flavor Interactions, Nucl. Phys. B 248 (1984) 647 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  13. C.Q. Geng and J.N. Ng, Flavor Connections and Neutrino Mass Hierarchy Invariant Invisible Axion Models Without Domain Wall Problem, Phys. Rev. D 39 (1989) 1449 [INSPIRE].

    ADS  MATH  Google Scholar 

  14. Z.G. Berezhiani and M.Yu. Khlopov, Cosmology of Spontaneously Broken Gauge Family Symmetry, Z. Phys. C 49 (1991) 73 [INSPIRE].

    MATH  Google Scholar 

  15. Z.G. Berezhiani and M.Yu. Khlopov, The Theory of broken gauge symmetry of families (in Russian), Sov. J. Nucl. Phys. 51 (1990) 739 [INSPIRE].

    MATH  Google Scholar 

  16. Z.G. Berezhiani and M.Yu. Khlopov, Physical and astrophysical consequences of breaking of the symmetry of families (in Russian), Sov. J. Nucl. Phys. 51 (1990) 935 [INSPIRE].

    MATH  Google Scholar 

  17. K.S. Babu and S.M. Barr, Family symmetry, gravity and the strong CP problem, Phys. Lett. B 300 (1993) 367 [hep-ph/9212219] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  18. A.S. Sakharov and M.Yu. Khlopov, Horizontal unification as the phenomenology of the theory of ‘everything’, Phys. Atom. Nucl. 57 (1994) 651 [INSPIRE].

    ADS  MATH  Google Scholar 

  19. M.E. Albrecht, T. Feldmann and T. Mannel, Goldstone Bosons in Effective Theories with Spontaneously Broken Flavour Symmetry, JHEP 10 (2010) 089 [arXiv:1002.4798] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  20. C. Cheung, Axion Protection from Flavor, JHEP 06 (2010) 074 [arXiv:1003.0941] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  21. Y.H. Ahn, Flavored Peccei-Quinn symmetry, Phys. Rev. D 91 (2015) 056005 [arXiv:1410.1634] [INSPIRE].

    ADS  Google Scholar 

  22. A. Celis, J. Fuentes-Martin and H. Serodio, An invisible axion model with controlled FCNCs at tree level, Phys. Lett. B 741 (2015) 117 [arXiv:1410.6217] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  23. T. Nomura, Y. Shimizu and T. Yamada, A4 × U(1)PQ model for the lepton flavor structure and the strong C P problem, JHEP 06 (2016) 125 [arXiv:1604.07650] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. F. Arias-Aragon and L. Merlo, The Minimal Flavour Violating Axion, JHEP 10 (2017) 168 [Erratum ibid. 11 (2019) 152] [arXiv:1709.07039] [INSPIRE].

  25. F. Björkeroth, E.J. Chun and S.F. King, Accidental Peccei-Quinn symmetry from discrete flavour symmetry and Pati-Salam, Phys. Lett. B 777 (2018) 428 [arXiv:1711.05741] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Y.H. Ahn, Fermion masses and flavor mixings and strong CP problem, Nucl. Phys. B 939 (2019) 534 [arXiv:1802.05044] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Y.H. Ahn, Compact model for Quarks and Leptons via flavored-Axions, Phys. Rev. D 98 (2018) 035047 [arXiv:1804.06988] [INSPIRE].

    ADS  MATH  Google Scholar 

  28. M. Linster and R. Ziegler, A Realistic U(2) Model of Flavor, JHEP 08 (2018) 058 [arXiv:1805.07341] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  29. D. Suematsu, An extension of the SM based on effective Peccei-Quinn Symmetry, Eur. Phys. J. C 78 (2018) 881 [arXiv:1809.06563] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  30. F. Björkeroth, L. Di Luzio, F. Mescia and E. Nardi, U(1) flavour symmetries as Peccei-Quinn symmetries, JHEP 02 (2019) 133 [arXiv:1811.09637] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. K. Choi, S.H. Im, C.B. Park and S. Yun, Minimal Flavor Violation with Axion-like Particles, JHEP 11 (2017) 070 [arXiv:1708.00021] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  32. F. Björkeroth, E.J. Chun and S.F. King, Flavourful Axion Phenomenology, JHEP 08 (2018) 117 [arXiv:1806.00660] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M.B. Gavela, R. Houtz, P. Quilez, R. Del Rey and O. Sumensari, Flavor constraints on electroweak ALP couplings, Eur. Phys. J. C 79 (2019) 369 [arXiv:1901.02031] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J. Jaeckel, A Family of WISPy Dark Matter Candidates, Phys. Lett. B 732 (2014) 1 [arXiv:1311.0880] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  35. S.W. Hawking, Quantum Coherence Down the Wormhole, Phys. Lett. B 195 (1987) 337 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. S.B. Giddings and A. Strominger, Loss of Incoherence and Determination of Coupling Constants in Quantum Gravity, Nucl. Phys. B 307 (1988) 854 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

    ADS  MATH  Google Scholar 

  38. D. Harlow and H. Ooguri, Constraints on Symmetries from Holography, Phys. Rev. Lett. 122 (2019) 191601 [arXiv:1810.05337] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  39. D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, arXiv:1810.05338 [INSPIRE].

  40. S. Fichet and P. Saraswat, Approximate Symmetries and Gravity, JHEP 01 (2020) 088 [arXiv:1909.02002] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. L.E. Ibáñez and G.G. Ross, Fermion masses and mixing angles from gauge symmetries, Phys. Lett. B 332 (1994) 100 [hep-ph/9403338] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  42. V. Jain and R. Shrock, Models of fermion mass matrices based on a flavor dependent and generation dependent U(1) gauge symmetry, Phys. Lett. B 352 (1995) 83 [hep-ph/9412367] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  43. P. Binetruy and P. Ramond, Yukawa textures and anomalies, Phys. Lett. B 350 (1995) 49 [hep-ph/9412385] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. E. Dudas, S. Pokorski and C.A. Savoy, Yukawa matrices from a spontaneously broken Abelian symmetry, Phys. Lett. B 356 (1995) 45 [hep-ph/9504292] [INSPIRE].

    Article  ADS  Google Scholar 

  45. E. Dudas, C. Grojean, S. Pokorski and C.A. Savoy, Abelian flavor symmetries in supersymmetric models, Nucl. Phys. B 481 (1996) 85 [hep-ph/9606383] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. P. Binetruy, S. Lavignac and P. Ramond, Yukawa textures with an anomalous horizontal Abelian symmetry, Nucl. Phys. B 477 (1996) 353 [hep-ph/9601243] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  47. N. Irges, S. Lavignac and P. Ramond, Predictions from an anomalous U(1) model of Yukawa hierarchies, Phys. Rev. D 58 (1998) 035003 [hep-ph/9802334] [INSPIRE].

    ADS  MATH  Google Scholar 

  48. C.D. Froggatt, M. Gibson and H.B. Nielsen, Neutrino masses and mixings from an anomaly free SM G × U(1)2 model, Phys. Lett. B 446 (1999) 256 [hep-ph/9811265] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  49. S.F. King, Large mixing angle MSW and atmospheric neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B 576 (2000) 85 [hep-ph/9912492] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  50. S.F. King, Atmospheric and solar neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B 562 (1999) 57 [hep-ph/9904210] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  51. M.S. Berger and K. Siyeon, Anomaly free flavor symmetry and neutrino anarchy, Phys. Rev. D 63 (2001) 057302 [hep-ph/0010245] [INSPIRE].

    ADS  Google Scholar 

  52. H.K. Dreiner, H. Murayama and M. Thormeier, Anomalous flavor U(1)X for everything, Nucl. Phys. B 729 (2005) 278 [hep-ph/0312012] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  53. M.-C. Chen, A. de Gouvêa and B.A. Dobrescu, Gauge Trimming of Neutrino Masses, Phys. Rev. D 75 (2007) 055009 [hep-ph/0612017] [INSPIRE].

    ADS  MATH  Google Scholar 

  54. H.K. Dreiner, C. Luhn, H. Murayama and M. Thormeier, Proton Hexality from an Anomalous Flavor U(1) and Neutrino Masses: Linking to the String Scale, Nucl. Phys. B 795 (2008) 172 [arXiv:0708.0989] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  55. L. Delle Rose, S. Khalil and S. Moretti, Explanation of the 17 MeV Atomki anomaly in a U(1) -extended two Higgs doublet model, Phys. Rev. D 96 (2017) 115024 [arXiv:1704.03436] [INSPIRE].

    ADS  MATH  Google Scholar 

  56. Q. Bonnefoy and E. Dudas, Axions and anomalous U(1)’s, Int. J. Mod. Phys. A 33 (2018) 1845001 [arXiv:1809.08256] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  57. R. Alonso, A. Carmona, B.M. Dillon, J.F. Kamenik, J. Martin Camalich and J. Zupan, A clockwork solution to the flavor puzzle, JHEP 10 (2018) 099 [arXiv:1807.09792] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. Smolkovič, M. Tammaro and J. Zupan, Anomaly free Froggatt-Nielsen models of flavor, JHEP 10 (2019) 188 [arXiv:1907.10063] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  60. S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  61. F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  62. E. Dudas, UV complete chiral Froggatt-Nielsen models, talk presented at Planck 2019, the 22nd International Conference From the Planck Scale to the Electroweak Scale, Granada, Spain, 3–7 June 2019 [https://indico.cern.ch/event/763250/contributions/3443102/attachments/1855378/3047208/7-Dudas.pdf ].

  63. N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett. 10 (1963) 531 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  64. M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  65. L. Wolfenstein, Parametrization of the Kobayashi-Maskawa Matrix, Phys. Rev. Lett. 51 (1983) 1945 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  66. M.B. Green and J.H. Schwarz, Anomaly Cancellation in Supersymmetric D = 10 Gauge Theory and Superstring Theory, Phys. Lett. 149B (1984) 117 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. J. Ellis, M. Fairbairn and P. Tunney, Anomaly-Free Models for Flavour Anomalies, Eur. Phys. J. C 78 (2018) 238 [arXiv:1705.03447] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  68. B.C. Allanach, J. Davighi and S. Melville, An Anomaly-free ATLAS: charting the space of flavour-dependent gauged U(1) extensions of the Standard Model, JHEP 02 (2019) 082 [arXiv:1812.04602] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  69. F.C. Correia and S. Fajfer, Light mediators in anomaly free U(1)X models. Part I. Theoretical framework, JHEP 10 (2019) 278 [arXiv:1905.03867] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  70. D.B. Costa, B.A. Dobrescu and P.J. Fox, General Solution to the U(1) Anomaly Equations, Phys. Rev. Lett. 123 (2019) 151601 [arXiv:1905.13729] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. P. Anastasopoulos, M. Bianchi, E. Dudas and E. Kiritsis, Anomalies, anomalous U(1)’s and generalized Chern-Simons terms, JHEP 11 (2006) 057 [hep-th/0605225] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. L. Calibbi, Z. Lalak, S. Pokorski and R. Ziegler, The Messenger Sector of SUSY Flavour Models and Radiative Breaking of Flavour Universality, JHEP 06 (2012) 018 [arXiv:1203.1489] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  73. Q. Bonnefoy, E. Dudas and S. Pokorski, Axions in a highly protected gauge symmetry model, Eur. Phys. J. C 79 (2019) 31 [arXiv:1804.01112] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  74. G.F. Giudice and A. Masiero, A Natural Solution to the mu Problem in Supergravity Theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  75. D.J.E. Marsh, Axion Cosmology, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. 104B (1981) 199 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  77. A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [INSPIRE].

    MATH  Google Scholar 

  78. S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992) 539 [INSPIRE].

    ADS  MATH  Google Scholar 

  79. M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  80. R. Holman, S.D.H. Hsu, T.W. Kephart, E.W. Kolb, R. Watkins and L.M. Widrow, Solutions to the strong CP problem in a world with gravity, Phys. Lett. B 282 (1992) 132 [hep-ph/9203206] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  81. H. Fukuda, M. Ibe, M. Suzuki and T.T. Yanagida, A “gauged” U(1) Peccei-Quinn symmetry, Phys. Lett. B 771 (2017) 327 [arXiv:1703.01112] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  82. C.A. Baker et al., An Improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  83. K. Kirch, EDM searches, AIP Conf. Proc. 1560 (2013) 90.

    Article  ADS  MATH  Google Scholar 

  84. V. Anastassopoulos et al., A Storage Ring Experiment to Detect a Proton Electric Dipole Moment, Rev. Sci. Instrum. 87 (2016) 115116 [arXiv:1502.04317] [INSPIRE].

    Article  ADS  Google Scholar 

  85. J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. 120B (1983) 127 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  86. L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. 120B (1983) 133 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  87. M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. 120B (1983) 137 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  88. E949 and E787 collaborations, Measurement of the K + → π+ νν branching ratio, Phys. Rev. D 77 (2008) 052003 [arXiv:0709.1000] [INSPIRE].

    ADS  MATH  Google Scholar 

  89. J.T. Goldman et al., Light Boson Emission in the Decay of the μ+ , Phys. Rev. D 36 (1987) 1543 [INSPIRE].

    ADS  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. DESY, Notkestrasse 85, 22607, Hamburg, Germany

    Q. Bonnefoy

  2. Centre de Physique Théorique, CNRS, École Polytechnique, IP Paris, 91128, Palaiseau, France

    E. Dudas

  3. Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093, Warsaw, Poland

    S. Pokorski

Authors
  1. Q. Bonnefoy
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. E. Dudas
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. S. Pokorski
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Q. Bonnefoy.

Additional information

ArXiv ePrint: 1909.05336

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnefoy, Q., Dudas, E. & Pokorski, S. Chiral Froggatt-Nielsen models, gauge anomalies and flavourful axions. J. High Energ. Phys. 2020, 191 (2020). https://doi.org/10.1007/JHEP01(2020)191

Download citation

  • Received: 05 November 2019

  • Accepted: 19 January 2020

  • Published: 30 January 2020

  • DOI: https://doi.org/10.1007/JHEP01(2020)191

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Anomalies in Field and String Theories
  • Beyond Standard Model
  • CP violation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature