Two-colour QCD phases and the topology at low temperature and high density


We delineate equilibrium phase structure and topological charge distribution of dense two-colour QCD at low temperature by using a lattice simulation with two-flavour Wilson fermions that has a chemical potential μ and a diquark source j incorporated. We systematically measure the diquark condensate, the Polyakov loop, the quark number density and the chiral condensate with improved accuracy and j → 0 extrapolation over earlier publications; the known qualitative features of the low temperature phase diagram, which is composed of the hadronic, Bose-Einstein condensed (BEC) and BCS phases, are reproduced. In addition, we newly find that around the boundary between the hadronic and BEC phases, nonzero quark number density occurs even in the hadronic phase in contrast to the prediction of the chiral perturbation theory (ChPT), while the diquark condensate approaches zero in a manner that is consistent with the ChPT prediction. At the highest μ, which is of order the inverse of the lattice spacing, all the above observables change drastically, which implies a lattice artifact. Finally, at temperature of order 0.45Tc, where Tc is the chiral transition temperature at zero chemical potential, the topological susceptibility is calculated from a gradient-flow method and found to be almost constant for all the values of μ ranging from the hadronic to BCS phase. This is a contrast to the case of 0.89Tc in which the topological susceptibility becomes small as the hadronic phase changes into the quark-gluon plasma phase.

A preprint version of the article is available at ArXiv.


  1. [1]

    LIGO Scientific and Virgo collaborations, GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett.119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].

  2. [2]

    A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Decoding the phase structure of QCD via particle production at high energy, Nature561 (2018) 321 [arXiv:1710.09425] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    Y. Aoki et al., The QCD transition temperature: results with physical masses in the continuum limit II, JHEP06 (2009) 088 [arXiv:0903.4155] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev.D 85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].

  5. [5]

    T. Schäfer and E.V. Shuryak, Instantons in QCD, Rev. Mod. Phys.70 (1998) 323 [hep-ph/9610451] [INSPIRE].

  6. [6]

    Z. Fodor and S.D. Katz, Lattice determination of the critical point of QCD at finite T and mu, JHEP03 (2002) 014 [hep-lat/0106002] [INSPIRE].

  7. [7]

    Z. Fodor and S.D. Katz, Critical point of QCD at finite T and μ, lattice results for physical quark masses, JHEP04 (2004) 050 [hep-lat/0402006] [INSPIRE].

  8. [8]

    S. Borsányi et al., QCD equation of state at nonzero chemical potential: continuum results with physical quark masses at order μ2, JHEP08 (2012) 053 [arXiv:1204.6710] [INSPIRE].

  9. [9]

    M.G. Alford, A. Schmitt, K. Rajagopal and T. Schäfer, Color superconductivity in dense quark matter, Rev. Mod. Phys.80 (2008) 1455 [arXiv:0709.4635] [INSPIRE].

  10. [10]

    E. Itou, K. Iida and T.-G. Lee, Topology of two-color QCD at low temperature and high density, PoS(LATTICE2018)168 (2018) [arXiv:1810.12477] [INSPIRE].

  11. [11]

    S. Muroya, A. Nakamura and C. Nonaka, Monte Carlo study of two color QCD with finite chemical potential: Status report of Wilson fermion simulation, Nucl. Phys. Proc. Suppl.94 (2001) 469 [hep-lat/0010073] [INSPIRE].

  12. [12]

    S. Muroya, A. Nakamura and C. Nonaka, Behavior of hadrons at finite density: Lattice study of color SU(2) QCD, Phys. Lett.B 551 (2003) 305 [hep-lat/0211010] [INSPIRE].

  13. [13]

    S. Muroya, A. Nakamura and C. Nonaka, Lattice study of QCD vacuum at finite baryon number density, Prog. Theor. Phys. Suppl.149 (2003) 247 [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    K. Fukushima, Characteristics of the eigenvalue distribution of the Dirac operator in dense two-color QCD, JHEP07 (2008) 083 [arXiv:0806.1104] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    J.B. Kogut, D.K. Sinclair, S.J. Hands and S.E. Morrison, Two color QCD at nonzero quark number density, Phys. Rev.D 64 (2001) 094505 [hep-lat/0105026] [INSPIRE].

  16. [16]

    J.B. Kogut, D. Toublan and D.K. Sinclair, The Phase diagram of four flavor SU(2) lattice gauge theory at nonzero chemical potential and temperature, Nucl. Phys.B 642 (2002) 181 [hep-lat/0205019] [INSPIRE].

  17. [17]

    B. Alles, M. D’Elia and M.P. Lombardo, Behaviour of the topological susceptibility in two colour QCD across the finite density transition, Nucl. Phys.B 752 (2006) 124 [hep-lat/0602022] [INSPIRE].

  18. [18]

    S. Hands, S. Kim and J.-I. Skullerud, Deconfinement in dense 2-color QCD, Eur. Phys. J.C 48 (2006) 193 [hep-lat/0604004] [INSPIRE].

  19. [19]

    S. Hands, P. Sitch and J.-I. Skullerud, Hadron Spectrum in a Two-Colour Baryon-Rich Medium, Phys. Lett.B 662 (2008) 405 [arXiv:0710.1966] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    S. Hands and P. Kenny, Topological Fluctuations in Dense Matter with Two Colors, Phys. Lett.B 701 (2011) 373 [arXiv:1104.0522] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    S. Cotter, P. Giudice, S. Hands and J.-I. Skullerud, Towards the phase diagram of dense two-color matter, Phys. Rev.D 87 (2013) 034507 [arXiv:1210.4496] [INSPIRE].

  22. [22]

    T. Boz, S. Cotter, L. Fister, D. Mehta and J.-I. Skullerud, Phase transitions and gluodynamics in 2-colour matter at high density, Eur. Phys. J.A 49 (2013) 87 [arXiv:1303.3223] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    T. Boz, P. Giudice, S. Hands, J.-I. Skullerud and A.G. Williams, Two-color QCD at high density, AIP Conf. Proc.1701 (2016) 060019 [arXiv:1502.01219] [INSPIRE].

  24. [24]

    V.V. Braguta, E.M. Ilgenfritz, A.Y. Kotov, A.V. Molochkov and A.A. Nikolaev, Study of the phase diagram of dense two-color QCD within lattice simulation, Phys. Rev.D 94 (2016) 114510 [arXiv:1605.04090] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    J.B. Kogut, M.A. Stephanov and D. Toublan, On two color QCD with baryon chemical potential, Phys. Lett.B 464 (1999) 183 [hep-ph/9906346] [INSPIRE].

  26. [26]

    J.B. Kogut, M.A. Stephanov, D. Toublan, J.J.M. Verbaarschot and A. Zhitnitsky, QCD-like theories at finite baryon density, Nucl. Phys.B 582 (2000) 477 [hep-ph/0001171] [INSPIRE].

  27. [27]

    K. Splittorff, D.T. Son and M.A. Stephanov, QCD-like theories at finite baryon and isospin density, Phys. Rev.D 64 (2001) 016003 [hep-ph/0012274] [INSPIRE].

  28. [28]

    P. Adhikari, S.B. Beleznay and M. Mannarelli, Finite Density Two Color Chiral Perturbation Theory Revisited, Eur. Phys. J.C 78 (2018) 441 [arXiv:1803.00490] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    D.H. Rischke, D.T. Son and M.A. Stephanov, Asymptotic deconfinement in high density QCD, Phys. Rev. Lett.87 (2001) 062001 [hep-ph/0011379] [INSPIRE].

  30. [30]

    D.T. Son and M.A. Stephanov, QCD at finite isospin density: From pion to quark-antiquark condensation, Phys. Atom. Nucl.64 (2001) 834 [Yad. Fiz.64 (2001) 899] [hep-ph/0011365] [INSPIRE].

  31. [31]

    F. Sannino, N. Marchal and W. Schafer, Partial deconfinement in color superconductivity, Phys. Rev.D 66 (2002) 016007 [hep-ph/0202248] [INSPIRE].

  32. [32]

    T. Schäfer, QCD and the ηmass: Instantons or confinement?, Phys. Rev.D 67 (2003) 074502 [hep-lat/0211035] [INSPIRE].

  33. [33]

    K. Fukushima and T. Hatsuda, The phase diagram of dense QCD, Rept. Prog. Phys.74 (2011) 014001 [arXiv:1005.4814] [INSPIRE].

  34. [34]

    R. Rapp, T. Schäfer, E.V. Shuryak and M. Velkovsky, Diquark Bose condensates in high density matter and instantons, Phys. Rev. Lett.81 (1998) 53 [hep-ph/9711396] [INSPIRE].

  35. [35]

    T. Kanazawa, T. Wettig and N. Yamamoto, Singular values of the Dirac operator in dense QCD-like theories, JHEP12 (2011) 007 [arXiv:1110.5858] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    T. Kanazawa, T. Wettig and N. Yamamoto, Banks-Casher-type relation for the BCS gap at high density, Eur. Phys. J.A 49 (2013) 88 [arXiv:1211.5332] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    G.S. Bali, G. Endrodi, R.V. Gavai and N. Mathur, Probing the nature of phases across the phase transition at finite isospin chemical potential, Acta Phys. Polon. Supp.10 (2017) 461 [arXiv:1610.00233] [INSPIRE].

    Article  Google Scholar 

  38. [38]

    M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP08 (2010) 071 [Erratum JHEP03 (2014) 092] [arXiv:1006.4518] [INSPIRE].

  39. [39]

    K. Iida, E. Itou and T.-G. Lee, Scale setting for two-color QCD with Nf = 2 Wilson fermions, in preparation.

  40. [40]

    S. Borsányi et al., High-precision scale setting in lattice QCD, JHEP09 (2012) 010 [arXiv:1203.4469] [INSPIRE].

  41. [41]

    B.B. Brandt, G. Endrodi and S. Schmalzbauer, QCD phase diagram for nonzero isospin-asymmetry, Phys. Rev.D 97 (2018) 054514 [arXiv:1712.08190] [INSPIRE].

  42. [42]

    G.-f. Sun, L. He and P. Zhuang, BEC-BCS crossover in the Nambu-Jona-Lasinio model of QCD, Phys. Rev.D 75 (2007) 096004 [hep-ph/0703159] [INSPIRE].

  43. [43]

    L. He, Nambu-Jona-Lasinio model description of weakly interacting Bose condensate and BEC-BCS crossover in dense QCD-like theories, Phys. Rev.D 82 (2010) 096003 [arXiv:1007.1920] [INSPIRE].

  44. [44]

    R. Contant and M.Q. Huber, Dense two-color QCD from Dyson-Schwinger equations, arXiv:1909.12796 [INSPIRE].

  45. [45]

    J. Wilhelm, L. Holicki, D. Smith, B. Wellegehausen and L. von Smekal, Continuum Goldstone spectrum of two-color QCD at finite density with staggered quarks, Phys. Rev.D 100 (2019) 114507 [arXiv:1910.04495] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    N. Ishii, S. Aoki and T. Hatsuda, The Nuclear Force from Lattice QCD, Phys. Rev. Lett.99 (2007) 022001 [nucl-th/0611096] [INSPIRE].

  47. [47]

    S. Aoki, T. Hatsuda and N. Ishii, Theoretical Foundation of the Nuclear Force in QCD and its applications to Central and Tensor Forces in Quenched Lattice QCD Simulations, Prog. Theor. Phys.123 (2010) 89 [arXiv:0909.5585] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    T.T. Takahashi and Y. Kanada-En’yo, Hadron-hadron interaction from SU(2) lattice QCD, Phys. Rev.D 82 (2010) 094506 [arXiv:0912.0691] [INSPIRE].

  49. [49]

    Y. Ikeda and H. Iida, Quark-anti-quark potentials from Nambu- Bethe-Salpeter amplitudes on lattice, Prog. Theor. Phys.128 (2012) 941 [arXiv:1102.2097] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    A. Amato, P. Giudice and S. Hands, Hadron wave functions as a probe of a two-color baryonic medium, Eur. Phys. J.A 51 (2015) 39 [arXiv:1501.03004] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information



Corresponding author

Correspondence to Etsuko Itou.

Additional information

ArXiv ePrint: 1910.07872

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iida, K., Itou, E. & Lee, TG. Two-colour QCD phases and the topology at low temperature and high density. J. High Energ. Phys. 2020, 181 (2020).

Download citation


  • Lattice QCD
  • Phase Diagram of QCD