Skip to main content

Axion-like relics: new constraints from old comagnetometer data

A preprint version of the article is available at arXiv.

Abstract

The noble-alkali comagnetometer, developed in recent years, has been shown to be a very accurate measuring device of anomalous magnetic-like fields. An ultra-light relic axion-like particle can source an anomalous field that permeates space, allowing for its detection by comagnetometers. Here we derive new constraints on relic axion-like particles interaction with neutrons and electrons from old comagnetometer data. We show that the decade-old experimental data place the most stringent terrestrial constraints to date on ultra-light axion-like particles coupled to neutrons. The constraints are comparable to those from stellar cooling, providing a complementary probe. Future planned improvements of comagnetometer measurements through altered geometry, constituent content and data analysis techniques could enhance the sensitivity to axion-like relics coupled to nucleons or electrons by many orders of magnitude.

References

  1. Planck collaboration, Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys.571 (2014) A16 [arXiv:1303.5076] [INSPIRE].

  2. F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helv. Phys. Acta6 (1933) 110 [INSPIRE].

    ADS  MATH  Google Scholar 

  3. A. Bosma, 21-cm line studies of spiral galaxies. 2. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types., Astron. J.86 (1981) 1825 [INSPIRE].

    ADS  Article  Google Scholar 

  4. V.C. Rubin, D. Burstein, W.K. Ford Jr. and N. Thonnard, Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb and SC rotation properties, Astrophys. J.289 (1985) 81 [INSPIRE].

    ADS  Article  Google Scholar 

  5. C.S. Frenk and S.D.M. White, Dark matter and cosmic structure, Annalen Phys.524 (2012) 507 [arXiv:1210.0544] [INSPIRE].

    ADS  Article  Google Scholar 

  6. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].

    ADS  Article  Google Scholar 

  7. F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett.40 (1978) 279 [INSPIRE].

    ADS  Article  Google Scholar 

  8. S. Weinberg, A New Light Boson?, Phys. Rev. Lett.40 (1978) 223 [INSPIRE].

    ADS  Article  Google Scholar 

  9. J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett.43 (1979) 103 [INSPIRE].

    ADS  Article  Google Scholar 

  10. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys.B 166 (1980) 493 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett.104B (1981) 199 [INSPIRE].

    ADS  Article  Google Scholar 

  12. A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys.31 (1980) 260 [INSPIRE].

    Google Scholar 

  13. J.E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod. Phys.82 (2010) 557 [INSPIRE].

    ADS  Article  Google Scholar 

  14. F. Wilczek, Conference Summary and Concluding Remarks, in Nuffield Workshop on the Very Early Universe, Cambridge, England, 21 June–9 July 1982, pp. 475–480 (1982).

  15. Y. Chikashige, R.N. Mohapatra and R.D. Peccei, Are There Real Goldstone Bosons Associated with Broken Lepton Number?, Phys. Lett.98B (1981) 265 [INSPIRE].

    ADS  Article  Google Scholar 

  16. G.B. Gelmini and M. Roncadelli, Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number, Phys. Lett.99B (1981) 411 [INSPIRE].

    ADS  Article  Google Scholar 

  17. A. Hook, TASI Lectures on the Strong CP Problem and Axions, PoS(TASI2018)004 (2019) [arXiv:1812.02669] [INSPIRE].

  18. P. Svrček and E. Witten, Axions In String Theory, JHEP06 (2006) 051 [hep-th/0605206] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String Axiverse, Phys. Rev.D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].

    ADS  Google Scholar 

  20. P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological Relaxation of the Electroweak Scale, Phys. Rev. Lett.115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].

    ADS  Article  Google Scholar 

  21. P. Agrawal, J. Fan and M. Reece, Clockwork Axions in Cosmology: Is Chromonatural Inflation Chrononatural?, JHEP10 (2018) 193 [arXiv:1806.09621] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. D.J.E. Marsh, Axions and ALPs: a very short introduction, in Proceedings, 13th Patras Workshop on Axions, WIMPs and WISPs, (PATRAS 2017), Thessaloniki, Greece, 15–19 May 2017, pp. 59–74 (2018) [DOI] [arXiv:1712.03018] [INSPIRE].

  23. N. Craig, A. Hook and S. Kasko, The Photophobic ALP, JHEP09 (2018) 028 [arXiv:1805.06538] [INSPIRE].

    ADS  Article  Google Scholar 

  24. G. Marques-Tavares and M. Teo, Light axions with large hadronic couplings, JHEP05 (2018) 180 [arXiv:1803.07575] [INSPIRE].

    ADS  Article  Google Scholar 

  25. P. Agrawal, G. Marques-Tavares and W. Xue, Opening up the QCD axion window, JHEP03 (2018) 049 [arXiv:1708.05008] [INSPIRE].

    ADS  Article  Google Scholar 

  26. P. Sikivie, Axion Cosmology, Lect. Notes Phys.741 (2008) 19 [astro-ph/0610440] [INSPIRE].

    ADS  Article  Google Scholar 

  27. L. Visinelli and P. Gondolo, Axion cold dark matter in non-standard cosmologies, Phys. Rev.D 81 (2010) 063508 [arXiv:0912.0015] [INSPIRE].

    ADS  Google Scholar 

  28. CAST collaboration, New CAST Limit on the Axion-Photon Interaction, Nature Phys.13 (2017) 584 [arXiv:1705.02290] [INSPIRE].

  29. K. Zioutas et al., Search for axions in streaming dark matter, arXiv:1703.01436 [INSPIRE].

  30. IAXO and CAST collaborations, Axion helioscopes update: the status of CAST & IAXO, PoS(TIPP2014)130 (2014) [arXiv:1501.01456] [INSPIRE].

  31. ABRACADABRA collaboration, First Results from ABRACADABRA-10cm: A Search for Low-Mass Axion Dark Matter, in 54th Rencontres de Moriond on Electroweak Interactions and Unified Theories (Moriond EW 2019), La Thuile, Italy, 16–23 March 2019 (2019) [arXiv:1905.06882] [INSPIRE].

  32. A. Garcon et al., The Cosmic Axion Spin Precession Experiment (CASPEr): a dark-matter search with nuclear magnetic resonance, arXiv:1707.05312 [INSPIRE].

  33. I.M. Bloch, R. Essig, K. Tobioka, T. Volansky and T.-T. Yu, Searching for Dark Absorption with Direct Detection Experiments, JHEP06 (2017) 087 [arXiv:1608.02123] [INSPIRE].

    ADS  Article  Google Scholar 

  34. Y. Hochberg, T. Lin and K.M. Zurek, Detecting Ultralight Bosonic Dark Matter via Absorption in Superconductors, Phys. Rev.D 94 (2016) 015019 [arXiv:1604.06800] [INSPIRE].

    ADS  Google Scholar 

  35. W.A. Terrano, E.G. Adelberger, C.A. Hagedorn and B.R. Heckel, Constraints on axionlike dark matter with masses down to 1023eV/c2 , Phys. Rev. Lett.122 (2019) 231301 [arXiv:1902.04246] [INSPIRE].

    ADS  Article  Google Scholar 

  36. XENON100 collaboration, First Axion Results from the XENON100 Experiment, Phys. Rev.D 90 (2014) 062009 [Erratum ibid.D 95 (2017) 029904] [arXiv:1404.1455] [INSPIRE].

  37. E. Armengaud et al., Axion searches with the EDELWEISS-II experiment, JCAP11 (2013) 067 [arXiv:1307.1488] [INSPIRE].

    ADS  Article  Google Scholar 

  38. J. Redondo, Solar axion flux from the axion-electron coupling, JCAP12 (2013) 008 [arXiv:1310.0823] [INSPIRE].

    ADS  Article  Google Scholar 

  39. Y. Hochberg, T. Lin and K.M. Zurek, Absorption of light dark matter in semiconductors, Phys. Rev.D 95 (2017) 023013 [arXiv:1608.01994] [INSPIRE].

    ADS  Google Scholar 

  40. W.A. Terrano, E.G. Adelberger, J.G. Lee and B.R. Heckel, Short-range spin-dependent interactions of electrons: a probe for exotic pseudo-Goldstone bosons, Phys. Rev. Lett.115 (2015) 201801 [arXiv:1508.02463] [INSPIRE].

    ADS  Article  Google Scholar 

  41. C. Smorra et al., Direct limits on the interaction of antiprotons with axion-like dark matter, Nature575 (2019) 310 [INSPIRE].

    ADS  Article  Google Scholar 

  42. P.W. Graham et al., Spin Precession Experiments for Light Axionic Dark Matter, Phys. Rev.D 97 (2018) 055006 [arXiv:1709.07852] [INSPIRE].

    ADS  Google Scholar 

  43. E.G. Adelberger, B.R. Heckel, S.A. Hoedl, C.D. Hoyle, D.J. Kapner and A. Upadhye, Particle Physics Implications of a Recent Test of the Gravitational Inverse Sqaure Law, Phys. Rev. Lett.98 (2007) 131104 [hep-ph/0611223] [INSPIRE].

    ADS  Article  Google Scholar 

  44. C. Abel et al., Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields, Phys. Rev.X 7 (2017) 041034 [arXiv:1708.06367] [INSPIRE].

    Article  Google Scholar 

  45. A. Garcon et al., Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance, arXiv:1902.04644 [INSPIRE].

  46. T. Wu et al., Search for Axionlike Dark Matter with a Liquid-State Nuclear Spin Comagnetometer, Phys. Rev. Lett.122 (2019) 191302 [arXiv:1901.10843] [INSPIRE].

    ADS  Article  Google Scholar 

  47. G. Vasilakis, Precision Measurements of Spin Interactions with High Density Atomic Vapors, Ph.D. Thesis, Princeton University (2011).

  48. T. Kornack, A Test of CPT and Lorentz Symmetry Using a K-3He Co-magnetometer, Ph.D. Thesis, Princeton University (2005).

  49. J.M. Brown, A New Limit on Lorentz- and CPT-Violating Neutron Spin Interactions Using a K-3He Comagnetometer, Ph.D. Thesis, Princeton University (2011).

  50. P.V. Vorobev and I.V. Kolokolov, Detectors for the cosmic axionic wind, in Cosmion 94 (In memory of Sakharov and Zeldovich), Moscow, Russia, 4–14 December 1994 (1995) [astro-ph/9501042] [INSPIRE].

  51. T.W. Kornack and M.V. Romalis, Operation of the K He-3 Self-Compensating Co-Magnetometer for a Test of Lorentz Symmetry, in CPT and Lorentz Symmetry. Proceedings: 3Rd Meeting, Bloomington, U.S.A., 4–7 August 2004, pp. 57–70 (2005).

  52. G. Vasilakis, J.M. Brown, T.W. Kornack and M.V. Romalis, Limits on new long range nuclear spin-dependent forces set with a K-3He co-magnetometer, Phys. Rev. Lett.103 (2009) 261801 [arXiv:0809.4700] [INSPIRE].

    ADS  Article  Google Scholar 

  53. J.M. Brown, S.J. Smullin, T.W. Kornack and M.V. Romalis, New limit on Lorentz and CPT-violating neutron spin interactions, Phys. Rev. Lett.105 (2010) 151604 [arXiv:1006.5425] [INSPIRE].

    ADS  Article  Google Scholar 

  54. J. Lee, A. Almasi and M. Romalis, Improved Limits on Spin-Mass Interactions, Phys. Rev. Lett.120 (2018) 161801 [arXiv:1801.02757] [INSPIRE].

    ADS  Article  Google Scholar 

  55. T.W. Kornack and M.V. Romalis, Dynamics of two overlapping spin ensembles interacting by spin exchange, Phys. Rev. Lett.89 (2002) 253002.

    ADS  Article  Google Scholar 

  56. M. Pospelov, Cosmological probes of light weakly coupled fields, http://indico.ictp.it/event/a13203/session/4/contribution/9/material/2/0.pdf .

  57. Y. Stadnik, Manifestations of Dark Matter and Variations of the Fundamental Constants of Nature in Atoms and Astrophysical Phenomena, Ph.D. Thesis, University of New South Wales (2017) [INSPIRE].

  58. R. Alonso, D. Blas and P. Wolf, Exploring the ultra-light to sub-MeV dark matter window with atomic clocks and co-magnetometers, JHEP07 (2019) 069 [arXiv:1810.00889] [INSPIRE].

    ADS  Article  Google Scholar 

  59. M.V. Romalis, D. Sheng, B. Saam and T.G. Walker, Comment on “New Limit on Lorentz-Invariance- and CPT-Violating Neutron Spin Interactions Using a Free-Spin-Precession3He129Xe Comagnetometer”, Phys. Rev. Lett.113 (2014) 188901 [INSPIRE].

    ADS  Article  Google Scholar 

  60. Y.V. Stadnik and V.V. Flambaum, Axion-induced effects in atoms, molecules and nuclei: Parity nonconservation, anapole moments, electric dipole moments and spin-gravity and spin-axion momentum couplings, Phys. Rev.D 89 (2014) 043522 [arXiv:1312.6667] [INSPIRE].

    ADS  Google Scholar 

  61. G.P. Centers et al., Stochastic fluctuations of bosonic dark matter, arXiv:1905.13650 [INSPIRE].

  62. J.D. Vergados and Y. Semertzidis, Axionic dark matter signatures in various halo models, Nucl. Phys.B 915 (2017) 10 [arXiv:1601.04765] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  63. M.V. Beznogov, E. Rrapaj, D. Page and S. Reddy, Constraints on Axion-like Particles and Nucleon Pairing in Dense Matter from the Hot Neutron Star in HESS J1731-347, Phys. Rev.C 98 (2018) 035802 [arXiv:1806.07991] [INSPIRE].

    ADS  Google Scholar 

  64. P. Carenza, T. Fischer, M. Giannotti, G. Guo, G. Martínez-Pinedo and A. Mirizzi, Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung, JCAP10 (2019) 016 [arXiv:1906.11844] [INSPIRE].

    ADS  Article  Google Scholar 

  65. R. Essig, R. Harnik, J. Kaplan and N. Toro, Discovering New Light States at Neutrino Experiments, Phys. Rev.D 82 (2010) 113008 [arXiv:1008.0636] [INSPIRE].

    ADS  Google Scholar 

  66. LUX collaboration, First Searches for Axions and Axionlike Particles with the LUX Experiment, Phys. Rev. Lett.118 (2017) 261301 [arXiv:1704.02297] [INSPIRE].

  67. M.M. Miller Bertolami, B.E. Melendez, L.G. Althaus and J. Isern, Revisiting the axion bounds from the Galactic white dwarf luminosity function, JCAP10 (2014) 069 [arXiv:1406.7712] [INSPIRE].

    ADS  Article  Google Scholar 

  68. J.H. Chang, R. Essig and S.D. McDermott, Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion and an Axion-like Particle, JHEP09 (2018) 051 [arXiv:1803.00993] [INSPIRE].

    ADS  Article  Google Scholar 

  69. G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP01 (2016) 034 [arXiv:1511.02867] [INSPIRE].

    Article  Google Scholar 

  70. M.S. Freeman, The Efficiency Limits of Spin Exchange Optical Pumping Methods of 129Xe Hyperpolarization: Implications for in vivo MRI Applications, Ph.D. Thesis, Duke University (2015).

  71. W. Hu, R. Barkana and A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett.85 (2000) 1158 [astro-ph/0003365] [INSPIRE].

    ADS  Article  Google Scholar 

  72. J.-W. Lee, Brief History of Ultra-light Scalar Dark Matter Models, EPJ Web Conf.168 (2018) 06005 [arXiv:1704.05057] [INSPIRE].

    Article  Google Scholar 

  73. R. Hlozek, D. Grin, D.J.E. Marsh and P.G. Ferreira, A search for ultralight axions using precision cosmological data, Phys. Rev.D 91 (2015) 103512 [arXiv:1410.2896] [INSPIRE].

    ADS  Google Scholar 

  74. J.C. Allred, R.N. Lyman, T.W. Kornack and M.V. Romalis, High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation, Phys. Rev. Lett.89 (2002) 130801.

    ADS  Article  Google Scholar 

  75. Y.V. Stadnik and V.V. Flambaum, Nuclear spin-dependent interactions: Searches for WIMP, Axion and Topological Defect Dark Matter and Tests of Fundamental Symmetries, Eur. Phys. J.C 75 (2015) 110 [arXiv:1408.2184] [INSPIRE].

    ADS  Article  Google Scholar 

  76. O. Katz, R. Shaham and O. Firstenberg, Quantum interface for noble-gas spins, arXiv:1905.12532.

  77. D. Budker, P.W. Graham, M. Ledbetter, S. Rajendran and A. Sushkov, Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr), Phys. Rev.X 4 (2014) 021030 [arXiv:1306.6089] [INSPIRE].

    Article  Google Scholar 

  78. A.H. Guth, M.P. Hertzberg and C. Prescod-WEinstein, Do Dark Matter Axions Form a Condensate with Long-Range Correlation?, Phys. Rev.D 92 (2015) 103513 [arXiv:1412.5930] [INSPIRE].

    ADS  Google Scholar 

  79. S.K. Lee, M. Lisanti and B.R. Safdi, Dark-Matter Harmonics Beyond Annual Modulation, JCAP11 (2013) 033 [arXiv:1307.5323] [INSPIRE].

    ADS  Article  Google Scholar 

  80. P.W. Graham and S. Rajendran, New Observables for Direct Detection of Axion Dark Matter, Phys. Rev.D 88 (2013) 035023 [arXiv:1306.6088] [INSPIRE].

    ADS  Google Scholar 

  81. B. Allen and J.D. Romano, Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities, Phys. Rev.D 59 (1999) 102001 [gr-qc/9710117] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itay M. Bloch.

Additional information

ArXiv ePrint: 1907.03767

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bloch, I.M., Hochberg, Y., Kuflik, E. et al. Axion-like relics: new constraints from old comagnetometer data. J. High Energ. Phys. 2020, 167 (2020). https://doi.org/10.1007/JHEP01(2020)167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2020)167

Keywords

  • Dark matter
  • Dark Matter and Double Beta Decay (experiments)