Scalar gauge dynamics and Dark Matter


We consider theories with one gauge group (SU, SO or Sp) and one scalar in a two-index representation. The renormalizable action often has accidental symmetries (such as global U(1) or unusual group parities) that lead to one or more stable states, providing Dark Matter candidates. We discuss the confined phase(s) of each theory and compute the two Higgs phases, finding no generic dualities among them. Discrete gauge symmetries can arise and accidental symmetries can be broken, possibly giving pseudo-Goldstone Dark Matter. Dark Matter candidates can have a complicated sub-structure characteristic of each group and can be accompanied by extra dark radiation.


  1. [1]

    D. Buttazzo, L. Di Luzio, G. Landini, A. Strumia and D. Teresi, Dark matter from self-dual gauge/Higgs dynamics, JHEP10 (2019) 067 [arXiv:1907.11228] [INSPIRE].

  2. [2]

    A.N. Schellekens, Symmetry breaking by bifundamentals, Phys. Rev.D 97 (2018) 056007 [arXiv:1711.04656] [INSPIRE].

  3. [3]

    L.-F. Li, Group theory of the spontaneously broken gauge symmetries, Phys. Rev.D 9 (1974) 1723 [INSPIRE].

  4. [4]

    D.-D. Wu, The symmetry breaking pattern of scalars in low dimension representations, Nucl. Phys.B 199 (1982) 523 [Erratum ibid.B 213 (1983) 545] [INSPIRE].

  5. [5]

    O. Antipin, M. Redi, A. Strumia and E. Vigiani, Accidental composite dark matter, JHEP07 (2015) 039 [arXiv:1503.08749] [INSPIRE].

  6. [6]

    A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Dark matter as a weakly coupled dark baryon, JHEP10 (2017) 210 [arXiv:1707.05380] [INSPIRE].

  7. [7]

    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev.D 7 (1973) 1888 [INSPIRE].

  8. [8]

    P. Jetzer, J.M. Gerard and D. Wyler, Possible symmetry breaking patterns with totally symmetric and antisymmetric representations, Nucl. Phys.B 241 (1984) 204 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    E. Witten, Current algebra, baryons and quark confinement, Nucl. Phys.B 223 (1983) 433 [INSPIRE].

  10. [10]

    J. Fröhlich, G. Morchio and F. Strocchi, Higgs phenomenon without symmetry breaking order parameter, Nucl. Phys.B 190 (1981) 553 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    C. Vafa and E. Witten, Restrictions on symmetry breaking in vector-like gauge theories, Nucl. Phys.B 234 (1984) 173 [INSPIRE].

  12. [12]

    R. Balkin, M. Ruhdorfer, E. Salvioni and A. Weiler, Dark matter shifts away from direct detection, JCAP11 (2018) 050 [arXiv:1809.09106] [INSPIRE].

  13. [13]

    H. Murayama and J. Shu, Topological dark matter, Phys. Lett.B 686 (2010) 162 [arXiv:0905.1720] [INSPIRE].

  14. [14]

    S. Baek, P. Ko and W.-I. Park, Hidden sector monopole, vector dark matter and dark radiation with Higgs portal, JCAP10 (2014) 067 [arXiv:1311.1035] [INSPIRE].

  15. [15]

    V.V. Khoze and G. Ro, Dark matter monopoles, vectors and photons, JHEP10 (2014) 061 [arXiv:1406.2291] [INSPIRE].

  16. [16]

    J.A. Bryan, S.M. Carroll and T. Pyne, A texture bestiary, Phys. Rev.D 50 (1994) 2806 [hep-ph/9312254] [INSPIRE].

  17. [17]

    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].

  18. [18]

    J.L. Feng, M. Kaplinghat and H.-B. Yu, Halo shape and relic density exclusions of Sommerfeld-enhanced dark matter explanations of cosmic ray excesses, Phys. Rev. Lett.104 (2010) 151301 [arXiv:0911.0422] [INSPIRE].

  19. [19]

    P. Agrawal, F.-Y. Cyr-Racine, L. Randall and J. Scholtz, Make dark matter charged again, JCAP05 (2017) 022 [arXiv:1610.04611] [INSPIRE].

  20. [20]

    S. Tulin and H.-B. Yu, Dark matter self-interactions and small scale structure, Phys. Rept.730 (2018) 1 [arXiv:1705.02358] [INSPIRE].

  21. [21]

    A. Kamada, M. Yamada and T.T. Yanagida, Unification for the darkly charged dark matter, arXiv:1908.00207 [INSPIRE].

  22. [22]

    L. Ackerman, M.R. Buckley, S.M. Carroll and M. Kamionkowski, Dark matter and dark radiation, Phys. Rev.D 79 (2009) 023519 [arXiv:0810.5126] [INSPIRE].

  23. [23]

    E. Gildener and S. Weinberg, Symmetry breaking and scalar bosons, Phys. Rev.D 13 (1976) 3333 [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    E. Gildener, Radiatively induced spontaneous symmetry breaking for asymptotically free gauge theories, Phys. Rev.D 13 (1976) 1025 [INSPIRE].

  25. [25]

    L. Di Luzio, E. Nardi and L. Ubaldi, Accidental Peccei-Quinn symmetry protected to arbitrary order, Phys. Rev. Lett.119 (2017) 011801 [arXiv:1704.01122] [INSPIRE].

  26. [26]

    S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev.D 46 (1992) 539 [INSPIRE].

  27. [27]

    R. Holman, S.D.H. Hsu, T.W. Kephart, E.W. Kolb, R. Watkins and L.M. Widrow, Solutions to the strong CP problem in a world with gravity, Phys. Lett.B 282 (1992) 132 [hep-ph/9203206] [INSPIRE].

  28. [28]

    M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett.B 282 (1992) 137 [hep-th/9202003] [INSPIRE].

  29. [29]

    C. Gross, O. Lebedev and T. Toma, Cancellation mechanism for dark-matter-nucleon interaction, Phys. Rev. Lett.119 (2017) 191801 [arXiv:1708.02253] [INSPIRE].

  30. [30]

    A. Salvio and A. Strumia, Agravity up to infinite energy, Eur. Phys. J.C 78 (2018) 124 [arXiv:1705.03896] [INSPIRE].

  31. [31]

    V. Afferrante, A. Maas and P. Törek, Toward the spectrum of the SU(2) adjoint Higgs model, in An alpine LHC physics summit 2019 (ALPS 2019), Obergurgl, Austria, 22–27 April 2019 [arXiv:1906.11193] [INSPIRE].

  32. [32]

    D. Antonov and J.E. F.T. Ribeiro, Quark condensate for various heavy flavors, Eur. Phys. J.C 72 (2012) 2179 [arXiv:1209.0408] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information



Corresponding author

Correspondence to Luca Di Luzio.

Additional information

ArXiv ePrint: 1911.04502

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buttazzo, D., Di Luzio, L., Ghorbani, P. et al. Scalar gauge dynamics and Dark Matter. J. High Energ. Phys. 2020, 130 (2020).

Download citation


  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Global Symmetries