Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Leading-logarithmic threshold resummation of Higgs production in gluon fusion at next-to-leading power

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 16 January 2020
  • Volume 2020, article number 94, (2020)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Leading-logarithmic threshold resummation of Higgs production in gluon fusion at next-to-leading power
Download PDF
  • Martin Beneke1,
  • Mathias Garny1,
  • Sebastian Jaskiewicz1,
  • Robert Szafron1,2,
  • Leonardo Vernazza3,4,5 &
  • …
  • Jian Wang6 
  • 380 Accesses

  • 48 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We sum the leading logarithms \( {\alpha}_s^n{\ln}^{2n-1}\left(1-z\right) \), n = 1, 2, . . . , near the kinematic threshold \( z={m}_H^2/\hat{s}\to 1 \) at next-to-leading power in the expansion in (1 − z) for Higgs production in gluon fusion. We highlight the new contributions compared to Drell-Yan production in quark-antiquark annihilation and show that the final result can be obtained to all orders by the substitution of the colour factor CF → CA, confirming previous fixed-order results. We also provide a numerical analysis of the next-to-leading power leading logarithms, which indicates that they are numerically relevant.

Article PDF

Download to read the full article text

Similar content being viewed by others

Resummation improved rapidity spectrum for gluon fusion Higgs production

Article Open access 17 May 2017

Higgs boson gluon-fusion production beyond threshold in N3LO QCD

Article Open access 18 March 2015

Soft gluon resummation for Higgs boson pair production including finite Mt effects

Article Open access 24 August 2018
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. C. Anastasiou et al., Higgs boson gluon-fusion production in QCD at three loops, Phys. Rev. Lett.114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].

    Article  ADS  Google Scholar 

  2. C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP05 (2016) 058 [arXiv:1602.00695] [INSPIRE].

    Article  ADS  Google Scholar 

  3. B. Mistlberger, Higgs boson production at hadron colliders at N3LO in QCD, JHEP05 (2018) 028 [arXiv:1802.00833] [INSPIRE].

    Article  ADS  Google Scholar 

  4. F. Dulat, B. Mistlberger and A. Pelloni, Precision predictions at N3LO for the Higgs boson rapidity distribution at the LHC, Phys. Rev.D 99 (2019) 034004 [arXiv:1810.09462] [INSPIRE].

  5. S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett.B 631 (2005) 48 [hep-ph/0508265] [INSPIRE].

  6. E. Laenen and L. Magnea, Threshold resummation for electroweak annihilation from DIS data, Phys. Lett.B 632 (2006) 270 [hep-ph/0508284] [INSPIRE].

  7. A. Idilbi, X.-d. Ji, J.-P. Ma and F. Yuan, Threshold resummation for Higgs production in effective field theory, Phys. Rev.D 73 (2006) 077501 [hep-ph/0509294] [INSPIRE].

  8. A. Idilbi, X.-d. Ji and F. Yuan, Resummation of threshold logarithms in effective field theory for DIS, Drell-Yan and Higgs production, Nucl. Phys.B 753 (2006) 42 [hep-ph/0605068] [INSPIRE].

  9. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-group improved prediction for Higgs production at hadron colliders, Eur. Phys. J.C 62 (2009) 333 [arXiv:0809.4283] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Bonvini and S. Marzani, Resummed Higgs cross section at N3LL, JHEP09 (2014) 007 [arXiv:1405.3654] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Beneke et al., Leading-logarithmic threshold resummation of the Drell-Yan process at next-to-leading power, JHEP03 (2019) 043 [arXiv:1809.10631] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. G.F. Sterman, Summation of large corrections to short distance hadronic cross-sections, Nucl. Phys.B 281 (1987) 310 [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Catani and L. Trentadue, Resummation of the QCD perturbative series for hard processes, Nucl. Phys.B 327 (1989) 323 [INSPIRE].

    Article  ADS  Google Scholar 

  14. N. Bahjat-Abbas et al., Diagrammatic resummation of leading-logarithmic threshold effects at next-to-leading power, JHEP11 (2019) 002 [arXiv:1905.13710] [INSPIRE].

    Article  ADS  Google Scholar 

  15. E. Laenen, L. Magnea, G. Stavenga and C.D. White, Next-to-Eikonal corrections to soft gluon radiation: a diagrammatic approach, JHEP01 (2011) 141 [arXiv:1010.1860] [INSPIRE].

    Article  ADS  Google Scholar 

  16. D. Bonocore et al., A factorization approach to next-to-leading-power threshold logarithms, JHEP06 (2015) 008 [arXiv:1503.05156] [INSPIRE].

    Article  ADS  Google Scholar 

  17. V. Del Duca et al., Universality of next-to-leading power threshold effects for colourless final states in hadronic collisions, JHEP11 (2017) 057 [arXiv:1706.04018] [INSPIRE].

    Article  ADS  Google Scholar 

  18. I. Moult, I.W. Stewart, G. Vita and H.X. Zhu, First subleading power resummation for event shapes, JHEP08 (2018) 013 [arXiv:1804.04665] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Beneke, M. Garny, R. Szafron and J. Wang, Anomalous dimension of subleading-power N-jet operators, JHEP03 (2018) 001 [arXiv:1712.04416] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Beneke, M. Garny, R. Szafron and J. Wang, Anomalous dimension of subleading-power N-jet operators. Part II, JHEP11 (2018) 112 [arXiv:1808.04742] [INSPIRE].

  21. M. Beneke, M. Garny, R. Szafron and J. Wang, Violation of the Kluberg-Stern-Zuber theorem in SCET, JHEP09 (2019) 101 [arXiv:1907.05463] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Marcantonini and I.W. Stewart, Reparameterization invariant collinear operators, Phys. Rev.D 79 (2009) 065028 [arXiv:0809.1093] [INSPIRE].

  23. D.W. Kolodrubetz, I. Moult and I.W. Stewart, Building blocks for subleading helicity operators, JHEP05 (2016) 139 [arXiv:1601.02607] [INSPIRE].

    Article  ADS  Google Scholar 

  24. I. Feige, D.W. Kolodrubetz, I. Moult and I.W. Stewart, A complete basis of helicity operators for subleading factorization, JHEP11 (2017) 142 [arXiv:1703.03411] [INSPIRE].

    Article  ADS  Google Scholar 

  25. I. Moult, I.W. Stewart and G. Vita, A subleading operator basis and matching for gg → H, JHEP07 (2017) 067 [arXiv:1703.03408] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Beneke, A. Broggio, S. Jaskiewicz and L. Vernazza, Threshold factorization of the Drell-Yan process at next-to-leading power, arXiv:1912.01585.

  27. M. Beneke and T. Feldmann, Multipole expanded soft collinear effective theory with non-Abelian gauge symmetry, Phys. Lett.B 553 (2003) 267 [hep-ph/0211358] [INSPIRE].

  28. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev.D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

  29. G. Bell, M. Beneke, T. Huber and X.-Q. Li, Heavy-to-light currents at NNLO in SCET and semi-inclusive \( \overline{B}\to {X}_s{l}^{+}{l}^{-} \)decay, Nucl. Phys.B 843 (2011) 143 [arXiv:1007.3758] [INSPIRE].

    Article  ADS  Google Scholar 

  30. C. Anastasiou et al., Higgs boson gluon-fusion production beyond threshold in N3LO QCD, JHEP03 (2015) 091 [arXiv:1411.3584] [INSPIRE].

    Article  Google Scholar 

  31. D. de Florian, J. Mazzitelli, S. Moch and A. Vogt, Approximate N3LO Higgs-boson production cross section using physical-kernel constraints, JHEP10 (2014) 176 [arXiv:1408.6277] [INSPIRE].

    Article  ADS  Google Scholar 

  32. M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys.B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].

  33. N. Kidonakis, Collinear and soft gluon corrections to Higgs production at NNNLO, Phys. Rev.D 77 (2008) 053008 [arXiv:0711.0142] [INSPIRE].

  34. A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J.C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

    Article  ADS  Google Scholar 

  35. J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys.G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].

  36. S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev.D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].

  37. L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J.C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].

    Article  ADS  Google Scholar 

  38. NNPDF collaboration, Parton distributions for the LHC Run II, JHEP04 (2015) 040 [arXiv:1410.8849] [INSPIRE].

  39. T. Becher, M. Neubert and G. Xu, Dynamical threshold enhancement and resummation in Drell-Yan production, JHEP07 (2008) 030 [arXiv:0710.0680] [INSPIRE].

    Article  ADS  Google Scholar 

  40. G. Sterman and M. Zeng, Quantifying comparisons of threshold resummations, JHEP05 (2014) 132 [arXiv:1312.5397] [INSPIRE].

    Article  ADS  Google Scholar 

  41. S. Catani, M.L. Mangano, P. Nason and L. Trentadue, The resummation of soft gluons in hadronic collisions, Nucl. Phys.B 478 (1996) 273 [hep-ph/9604351] [INSPIRE].

  42. S. Moch, J.A.M. Vermaseren and A. Vogt, The quark form-factor at higher orders, JHEP08 (2005) 049 [hep-ph/0507039] [INSPIRE].

    Article  ADS  Google Scholar 

  43. F. Dulat, A. Lazopoulos and B. Mistlberger, iHixs 2 — Inclusive Higgs cross sections, Comput. Phys. Commun.233 (2018) 243 [arXiv:1802.00827] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Physik Department T31, James-Franck-Straße 1, Technische Universität München, D-85748, Garching, Germany

    Martin Beneke, Mathias Garny, Sebastian Jaskiewicz & Robert Szafron

  2. Theoretical Physics Department, CERN, 1211, Geneva 23, Switzerland

    Robert Szafron

  3. Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, NL-1098 XH, Amsterdam, The Netherlands

    Leonardo Vernazza

  4. Nikhef, Science Park 105, NL-1098 XG, Amsterdam, The Netherlands

    Leonardo Vernazza

  5. Dipartimento di Fisica Teorica, Università di Torino, and INFN — Sezione di Torino, Via P. Giuria 1, I-10125, Torino, Italy

    Leonardo Vernazza

  6. School of Physics, Shandong University, Jinan, 250100, Shandong, China

    Jian Wang

Authors
  1. Martin Beneke
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Mathias Garny
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Sebastian Jaskiewicz
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Robert Szafron
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Leonardo Vernazza
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Jian Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jian Wang.

Additional information

ArXiv ePrint: 1910.12685

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beneke, M., Garny, M., Jaskiewicz, S. et al. Leading-logarithmic threshold resummation of Higgs production in gluon fusion at next-to-leading power. J. High Energ. Phys. 2020, 94 (2020). https://doi.org/10.1007/JHEP01(2020)094

Download citation

  • Received: 14 November 2019

  • Accepted: 28 December 2019

  • Published: 16 January 2020

  • DOI: https://doi.org/10.1007/JHEP01(2020)094

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Perturbative QCD
  • Resummation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature