Abstract
We discuss the possibility to predict the QCD axion mass in the context of grand unified theories. We investigate the implementation of the DFSZ mechanism in the context of renormalizable SU(5) theories. In the simplest theory, the axion mass can be predicted with good precision in the range ma = (2–16) neV, and there is a strong correlation between the predictions for the axion mass and proton decay rates. In this context, we predict an upper bound for the proton decay channels with antineutrinos, \( \tau \left(p\to {K}^{+}\overline{\nu}\right)\lesssim 4\times {10}^{37} \) yr and \( \tau \left(p\to {\pi}^{+}\overline{\nu}\right)\lesssim 2\times {10}^{36} \) yr. This theory can be considered as the minimal realistic grand unified theory with the DFSZ mechanism and it can be fully tested by proton decay and axion experiments.
References
R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].
F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett.40 (1978) 279 [INSPIRE].
S. Weinberg, A New Light Boson?, Phys. Rev. Lett.40 (1978) 223 [INSPIRE].
J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett.B 120 (1983) 127 [INSPIRE].
L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett.B 120 (1983) 133 [INSPIRE].
M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett.B 120 (1983) 137 [INSPIRE].
G.G. Raffelt, Astrophysical methods to constrain axions and other novel particle phenomena, Phys. Rept.198 (1990) 1 [INSPIRE].
M. Dine, TASI lectures on the strong CP problem, in proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2000): Flavor Physics for the Millennium, Boulder, Colorado, U.S.A., 4–30 June 2000, pp. 349–369 [hep-ph/0011376] [INSPIRE].
P. Sikivie, Axion Cosmology, Lect. Notes Phys.741 (2008) 19 [astro-ph/0610440] [INSPIRE].
J.E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod. Phys.82 (2010) 557 [Erratum ibid.91 (2019) 049902] [arXiv:0807.3125] [INSPIRE].
J. Jaeckel and A. Ringwald, The Low-Energy Frontier of Particle Physics, Ann. Rev. Nucl. Part. Sci.60 (2010) 405 [arXiv:1002.0329] [INSPIRE].
D.J.E. Marsh, Axion Cosmology, Phys. Rept.643 (2016) 1 [arXiv:1510.07633] [INSPIRE].
P.W. Graham, I.G. Irastorza, S.K. Lamoreaux, A. Lindner and K.A. van Bibber, Experimental Searches for the Axion and Axion-Like Particles, Ann. Rev. Nucl. Part. Sci.65 (2015) 485 [arXiv:1602.00039] [INSPIRE].
I.G. Irastorza and J. Redondo, New experimental approaches in the search for axion-like particles, Prog. Part. Nucl. Phys.102 (2018) 89 [arXiv:1801.08127] [INSPIRE].
A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys.31 (1980) 260 [INSPIRE].
M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett.B 104 (1981) 199 [INSPIRE].
J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett.43 (1979) 103 [INSPIRE].
M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys.B 166 (1980) 493 [INSPIRE].
P. Fileviez Pérez, C. Murgui and A.D. Plascencia, The QCD Axion and Unification, JHEP11 (2019) 093 [arXiv:1908.01772] [INSPIRE].
R.T. Co, F. D’Eramo and L.J. Hall, Supersymmetric axion grand unified theories and their predictions, Phys. Rev.D 94 (2016) 075001 [arXiv:1603.04439] [INSPIRE].
S.M. Boucenna and Q. Shafi, Axion inflation, proton decay and leptogenesis in SU(5) × U(1)PQ, Phys. Rev.D 97 (2018) 075012 [arXiv:1712.06526] [INSPIRE].
L. Di Luzio, A. Ringwald and C. Tamarit, Axion mass prediction from minimal grand unification, Phys. Rev.D 98 (2018) 095011 [arXiv:1807.09769] [INSPIRE].
A. Ernst, A. Ringwald and C. Tamarit, Axion Predictions in SO(10) × U(1)PQModels, JHEP02 (2018) 103 [arXiv:1801.04906] [INSPIRE].
M.B. Wise, H. Georgi and S.L. Glashow, SU(5) and the Invisible Axion, Phys. Rev. Lett.47 (1981) 402 [INSPIRE].
Y. Kahn, B.R. Safdi and J. Thaler, Broadband and Resonant Approaches to Axion Dark Matter Detection, Phys. Rev. Lett.117 (2016) 141801 [arXiv:1602.01086] [INSPIRE].
D. Budker, P.W. Graham, M. Ledbetter, S. Rajendran and A. Sushkov, Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr), Phys. Rev.X 4 (2014) 021030 [arXiv:1306.6089] [INSPIRE].
P. Fileviez Pérez, Fermion mixings versus d = 6 proton decay, Phys. Lett.B 595 (2004) 476 [hep-ph/0403286] [INSPIRE].
M. Gorghetto and G. Villadoro, Topological Susceptibility and QCD Axion Mass: QED and NNLO corrections, JHEP03 (2019) 033 [arXiv:1812.01008] [INSPIRE].
Particle Data Group, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
A. Giveon, L.J. Hall and U. Sarid, SU(5) unification revisited, Phys. Lett.B 271 (1991) 138 [INSPIRE].
V. Miralles and A. Pich, LHC bounds on coloured scalars, Phys. Rev.D 100 (2019) 115042 [arXiv:1910.07947] [INSPIRE].
Super-Kamiokande collaboration, Search for proton decay via p → ννK+using 260 kiloton · year data of Super-Kamiokande, Phys. Rev.D 90 (2014) 072005 [arXiv:1408.1195] [INSPIRE].
Hyper-Kamiokande collaboration, Hyper-Kamiokande Design Report, arXiv:1805.04163 [INSPIRE].
DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1512.06148 [INSPIRE].
P. Nath and P. Fileviez Pérez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept.441 (2007) 191 [hep-ph/0601023] [INSPIRE].
Y. Aoki, T. Izubuchi, E. Shintani and A. Soni, Improved lattice computation of proton decay matrix elements, Phys. Rev.D 96 (2017) 014506 [arXiv:1705.01338] [INSPIRE].
Super-Kamiokande collaboration, Search for Nucleon Decay via \( n\to \overline{\nu}{\pi}^0 \)and \( p\to \overline{\nu}{\pi}^{+} \)in Super-Kamiokande, Phys. Rev. Lett.113 (2014) 121802 [arXiv:1305.4391] [INSPIRE].
M. Pospelov and A. Ritz, Theta vacua, QCD sum rules and the neutron electric dipole moment, Nucl. Phys.B 573 (2000) 177 [hep-ph/9908508] [INSPIRE].
D.F. Jackson Kimball et al., Overview of the Cosmic Axion Spin Precession Experiment (CASPEr), arXiv:1711.08999 [INSPIRE].
G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP01 (2016) 034 [arXiv:1511.02867] [INSPIRE].
J.L. Ouellet et al., First Results from ABRACADABRA-10 cm: A Search for Sub-μeV Axion Dark Matter, Phys. Rev. Lett.122 (2019) 121802 [arXiv:1810.12257] [INSPIRE].
C. Abel et al., Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields, Phys. Rev.X 7 (2017) 041034 [arXiv:1708.06367] [INSPIRE].
Super-Kamiokande collaboration, Search for proton decay via p → e+π0and p → μ+π0in 0.31 megaton · years exposure of the Super-Kamiokande water Cherenkov detector, Phys. Rev.D 95 (2017) 012004 [arXiv:1610.03597] [INSPIRE].
Hyper-Kamiokande Proto collaboration, The Hyper-Kamiokande Experiment, in proceedings of the Prospects in Neutrino Physics (NuPhys2016), London, U.K., 12–14 December 2016, arXiv:1705.00306 [INSPIRE].
P. Minkowski, μ → eγ at a Rate of One Out of 109Muon Decays?, Phys. Lett.B 67 (1977) 421 [INSPIRE].
R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett.44 (1980) 912 [INSPIRE].
M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc.C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc.C 7902131 (1979) 95 [INSPIRE].
M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett.B 174 (1986) 45 [INSPIRE].
M. Fukugita and T. Yanagida, Resurrection of grand unified theory baryogenesis, Phys. Rev. Lett.89 (2002) 131602 [hep-ph/0203194] [INSPIRE].
P. Fileviez Pérez and C. Murgui, Renormalizable SU(5) Unification, Phys. Rev.D 94 (2016) 075014 [arXiv:1604.03377] [INSPIRE].
A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass and Oscillation, Phys. Lett.B 93 (1980) 389 [Erratum ibid.B 95 (1980) 461] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1911.05738
Rights and permissions
This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.
About this article
Cite this article
Pérez, P.F., Murgui, C. & Plascencia, A.D. Axion dark matter, proton decay and unification. J. High Energ. Phys. 2020, 91 (2020). https://doi.org/10.1007/JHEP01(2020)091
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2020)091
Keywords
- Beyond Standard Model
- Cosmology of Theories beyond the SM
- GUT