Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Axion dark matter, proton decay and unification
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Proton decay and axion dark matter in SO(10) grand unification via minimal left–right symmetry

28 May 2020

Yuta Hamada, Masahiro Ibe, … Norimi Yokozaki

Dark Grand Unification in the axiverse: decaying axion dark matter and spontaneous baryogenesis

20 December 2022

Joshua W. Foster, Soubhik Kumar, … Yotam Soreq

Axion-like particles as mediators for dark matter: beyond freeze-out

14 February 2023

A. Bharucha, F. Brümmer, … S. Mutzel

Flavourful axion phenomenology

21 August 2018

Fredrik Björkeroth, Eung Jin Chun & Stephen F. King

The QCD axion and unification

15 November 2019

Pavel Fileviez Pérez, Clara Murgui & Alexis D. Plascencia

R-parity violation axiogenesis

26 November 2021

Raymond T. Co, Keisuke Harigaya, … Aaron Pierce

A viable QCD axion in the MeV mass range

13 July 2018

Daniele S. M. Alves & Neal Weiner

Dynamical axions and gravitational waves

24 July 2019

Djuna Croon, Rachel Houtz & Verónica Sanz

Lepto-axiogenesis

01 March 2021

Raymond T. Co, Nicolas Fernandez, … Keisuke Harigaya

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 16 January 2020

Axion dark matter, proton decay and unification

  • Pavel Fileviez Pérez1,
  • Clara Murgui2 &
  • Alexis D. Plascencia1 

Journal of High Energy Physics volume 2020, Article number: 91 (2020) Cite this article

  • 271 Accesses

  • 16 Citations

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We discuss the possibility to predict the QCD axion mass in the context of grand unified theories. We investigate the implementation of the DFSZ mechanism in the context of renormalizable SU(5) theories. In the simplest theory, the axion mass can be predicted with good precision in the range ma = (2–16) neV, and there is a strong correlation between the predictions for the axion mass and proton decay rates. In this context, we predict an upper bound for the proton decay channels with antineutrinos, \( \tau \left(p\to {K}^{+}\overline{\nu}\right)\lesssim 4\times {10}^{37} \) yr and \( \tau \left(p\to {\pi}^{+}\overline{\nu}\right)\lesssim 2\times {10}^{36} \) yr. This theory can be considered as the minimal realistic grand unified theory with the DFSZ mechanism and it can be fully tested by proton decay and axion experiments.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].

    Article  ADS  Google Scholar 

  2. F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett.40 (1978) 279 [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Weinberg, A New Light Boson?, Phys. Rev. Lett.40 (1978) 223 [INSPIRE].

    Article  ADS  Google Scholar 

  4. J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett.B 120 (1983) 127 [INSPIRE].

    Article  ADS  Google Scholar 

  5. L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett.B 120 (1983) 133 [INSPIRE].

    Article  ADS  Google Scholar 

  6. M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett.B 120 (1983) 137 [INSPIRE].

    Article  ADS  Google Scholar 

  7. G.G. Raffelt, Astrophysical methods to constrain axions and other novel particle phenomena, Phys. Rept.198 (1990) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Dine, TASI lectures on the strong CP problem, in proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2000): Flavor Physics for the Millennium, Boulder, Colorado, U.S.A., 4–30 June 2000, pp. 349–369 [hep-ph/0011376] [INSPIRE].

  9. P. Sikivie, Axion Cosmology, Lect. Notes Phys.741 (2008) 19 [astro-ph/0610440] [INSPIRE].

  10. J.E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod. Phys.82 (2010) 557 [Erratum ibid.91 (2019) 049902] [arXiv:0807.3125] [INSPIRE].

  11. J. Jaeckel and A. Ringwald, The Low-Energy Frontier of Particle Physics, Ann. Rev. Nucl. Part. Sci.60 (2010) 405 [arXiv:1002.0329] [INSPIRE].

    Article  ADS  Google Scholar 

  12. D.J.E. Marsh, Axion Cosmology, Phys. Rept.643 (2016) 1 [arXiv:1510.07633] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. P.W. Graham, I.G. Irastorza, S.K. Lamoreaux, A. Lindner and K.A. van Bibber, Experimental Searches for the Axion and Axion-Like Particles, Ann. Rev. Nucl. Part. Sci.65 (2015) 485 [arXiv:1602.00039] [INSPIRE].

    Article  ADS  Google Scholar 

  14. I.G. Irastorza and J. Redondo, New experimental approaches in the search for axion-like particles, Prog. Part. Nucl. Phys.102 (2018) 89 [arXiv:1801.08127] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys.31 (1980) 260 [INSPIRE].

  16. M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett.B 104 (1981) 199 [INSPIRE].

    Article  ADS  Google Scholar 

  17. J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett.43 (1979) 103 [INSPIRE].

    Article  ADS  Google Scholar 

  18. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys.B 166 (1980) 493 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. P. Fileviez Pérez, C. Murgui and A.D. Plascencia, The QCD Axion and Unification, JHEP11 (2019) 093 [arXiv:1908.01772] [INSPIRE].

  20. R.T. Co, F. D’Eramo and L.J. Hall, Supersymmetric axion grand unified theories and their predictions, Phys. Rev.D 94 (2016) 075001 [arXiv:1603.04439] [INSPIRE].

  21. S.M. Boucenna and Q. Shafi, Axion inflation, proton decay and leptogenesis in SU(5) × U(1)PQ, Phys. Rev.D 97 (2018) 075012 [arXiv:1712.06526] [INSPIRE].

  22. L. Di Luzio, A. Ringwald and C. Tamarit, Axion mass prediction from minimal grand unification, Phys. Rev.D 98 (2018) 095011 [arXiv:1807.09769] [INSPIRE].

  23. A. Ernst, A. Ringwald and C. Tamarit, Axion Predictions in SO(10) × U(1)PQModels, JHEP02 (2018) 103 [arXiv:1801.04906] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M.B. Wise, H. Georgi and S.L. Glashow, SU(5) and the Invisible Axion, Phys. Rev. Lett.47 (1981) 402 [INSPIRE].

  25. Y. Kahn, B.R. Safdi and J. Thaler, Broadband and Resonant Approaches to Axion Dark Matter Detection, Phys. Rev. Lett.117 (2016) 141801 [arXiv:1602.01086] [INSPIRE].

    Article  ADS  Google Scholar 

  26. D. Budker, P.W. Graham, M. Ledbetter, S. Rajendran and A. Sushkov, Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr), Phys. Rev.X 4 (2014) 021030 [arXiv:1306.6089] [INSPIRE].

  27. P. Fileviez Pérez, Fermion mixings versus d = 6 proton decay, Phys. Lett.B 595 (2004) 476 [hep-ph/0403286] [INSPIRE].

  28. M. Gorghetto and G. Villadoro, Topological Susceptibility and QCD Axion Mass: QED and NNLO corrections, JHEP03 (2019) 033 [arXiv:1812.01008] [INSPIRE].

    Article  ADS  Google Scholar 

  29. Particle Data Group, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].

  30. A. Giveon, L.J. Hall and U. Sarid, SU(5) unification revisited, Phys. Lett.B 271 (1991) 138 [INSPIRE].

    Article  ADS  Google Scholar 

  31. V. Miralles and A. Pich, LHC bounds on coloured scalars, Phys. Rev.D 100 (2019) 115042 [arXiv:1910.07947] [INSPIRE].

    ADS  Google Scholar 

  32. Super-Kamiokande collaboration, Search for proton decay via p → ννK+using 260 kiloton · year data of Super-Kamiokande, Phys. Rev.D 90 (2014) 072005 [arXiv:1408.1195] [INSPIRE].

  33. Hyper-Kamiokande collaboration, Hyper-Kamiokande Design Report, arXiv:1805.04163 [INSPIRE].

  34. DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1512.06148 [INSPIRE].

  35. P. Nath and P. Fileviez Pérez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept.441 (2007) 191 [hep-ph/0601023] [INSPIRE].

  36. Y. Aoki, T. Izubuchi, E. Shintani and A. Soni, Improved lattice computation of proton decay matrix elements, Phys. Rev.D 96 (2017) 014506 [arXiv:1705.01338] [INSPIRE].

  37. Super-Kamiokande collaboration, Search for Nucleon Decay via \( n\to \overline{\nu}{\pi}^0 \)and \( p\to \overline{\nu}{\pi}^{+} \)in Super-Kamiokande, Phys. Rev. Lett.113 (2014) 121802 [arXiv:1305.4391] [INSPIRE].

  38. M. Pospelov and A. Ritz, Theta vacua, QCD sum rules and the neutron electric dipole moment, Nucl. Phys.B 573 (2000) 177 [hep-ph/9908508] [INSPIRE].

  39. D.F. Jackson Kimball et al., Overview of the Cosmic Axion Spin Precession Experiment (CASPEr), arXiv:1711.08999 [INSPIRE].

  40. G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP01 (2016) 034 [arXiv:1511.02867] [INSPIRE].

    Article  Google Scholar 

  41. J.L. Ouellet et al., First Results from ABRACADABRA-10 cm: A Search for Sub-μeV Axion Dark Matter, Phys. Rev. Lett.122 (2019) 121802 [arXiv:1810.12257] [INSPIRE].

    Article  ADS  Google Scholar 

  42. C. Abel et al., Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields, Phys. Rev.X 7 (2017) 041034 [arXiv:1708.06367] [INSPIRE].

  43. Super-Kamiokande collaboration, Search for proton decay via p → e+π0and p → μ+π0in 0.31 megaton · years exposure of the Super-Kamiokande water Cherenkov detector, Phys. Rev.D 95 (2017) 012004 [arXiv:1610.03597] [INSPIRE].

  44. Hyper-Kamiokande Proto collaboration, The Hyper-Kamiokande Experiment, in proceedings of the Prospects in Neutrino Physics (NuPhys2016), London, U.K., 12–14 December 2016, arXiv:1705.00306 [INSPIRE].

  45. P. Minkowski, μ → eγ at a Rate of One Out of 109Muon Decays?, Phys. Lett.B 67 (1977) 421 [INSPIRE].

  46. R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett.44 (1980) 912 [INSPIRE].

  47. M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc.C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

    Google Scholar 

  48. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc.C 7902131 (1979) 95 [INSPIRE].

    Google Scholar 

  49. M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett.B 174 (1986) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  50. M. Fukugita and T. Yanagida, Resurrection of grand unified theory baryogenesis, Phys. Rev. Lett.89 (2002) 131602 [hep-ph/0203194] [INSPIRE].

  51. P. Fileviez Pérez and C. Murgui, Renormalizable SU(5) Unification, Phys. Rev.D 94 (2016) 075014 [arXiv:1604.03377] [INSPIRE].

  52. A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass and Oscillation, Phys. Lett.B 93 (1980) 389 [Erratum ibid.B 95 (1980) 461] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Physics Department and Center for Education and Research in Cosmology and Astrophysics (CERCA), Case Western Reserve University, Cleveland, OH, 44106, USA

    Pavel Fileviez Pérez & Alexis D. Plascencia

  2. Departamento de Física Teórica, IFIC, Universitat de Valencia-CSIC, E-46071, Valencia, Spain

    Clara Murgui

Authors
  1. Pavel Fileviez Pérez
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Clara Murgui
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Alexis D. Plascencia
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alexis D. Plascencia.

Additional information

ArXiv ePrint: 1911.05738

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pérez, P.F., Murgui, C. & Plascencia, A.D. Axion dark matter, proton decay and unification. J. High Energ. Phys. 2020, 91 (2020). https://doi.org/10.1007/JHEP01(2020)091

Download citation

  • Received: 19 November 2019

  • Revised: 17 December 2019

  • Accepted: 20 December 2019

  • Published: 16 January 2020

  • DOI: https://doi.org/10.1007/JHEP01(2020)091

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • GUT
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.