Solution of the self-dual Φ4 QFT-model on four-dimensional Moyal space

Abstract

Previously the exact solution of the planar sector of the self-dual Φ4-model on 4-dimensional Moyal space was established up to the solution of a Fredholm integral equation. This paper solves, for any coupling constant λ > −\( \frac{1}{\uppi} \), the Fredholm equation in terms of a hypergeometric function and thus completes the construction of the planar sector of the model. We prove that the interacting model has spectral dimension 4 2 \( \frac{\arcsin \left(\uplambda \uppi \right)}{\uppi} \) for |λ| <\( \frac{1}{\uppi} \). It is this dimension drop which for λ > 0 avoids the triviality problem of the matricial \( {\varPhi}_4^4 \)-model. We also establish the power series approximation of the Fredholm solution to all orders in λ. The appearing functions are hyperlogarithms defined by iterated integrals, here of alternating letters 0 and 1. We identify the renormalisation parameter which gives the same normalisation as the ribbon graph expansion.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    W.E. Thirring, A soluble relativistic field theory?, Annals Phys.3 (1958) 91 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    J.S. Schwinger, Gauge invariance and mass. 2., Phys. Rev.128 (1962) 2425 [INSPIRE].

  3. [3]

    D.J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev.D 10 (1974) 3235 [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    H. Grosse and R. Wulkenhaar, Renormalisation of 𝜙4theory on noncommutative4in the matrix base, Commun. Math. Phys.256 (2005) 305 [hep-th/0401128] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  5. [5]

    M. Disertori, R. Gurau, J. Magnen and V. Rivasseau, Vanishing of beta function of non commutative \( {\varPhi}_4^4 \)theory to all orders, Phys. Lett.B 649 (2007) 95 [hep-th/0612251] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  6. [6]

    E. Langmann and R.J. Szabo, Duality in scalar field theory on noncommutative phase spaces, Phys. Lett.B 533 (2002) 168 [hep-th/0202039] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    H. Grosse and R. Wulkenhaar, Self-dual noncommutative 𝜙4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory, Commun. Math. Phys.329 (2014) 1069 [arXiv:1205.0465] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    H. Grosse, A. Hock and R. Wulkenhaar, Solution of all quartic matrix models, arXiv:1906.04600 [INSPIRE].

  9. [9]

    I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, seventh ed., Elsevier/Academic Press, Amsterdam, The Netherlands (2007).

  10. [10]

    S. Ponnusamy and M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric function, Mathematika44 (1997) 278.

    MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    F. Tricomi, Integral Equations, Dover Publications, New York, U.S.A., (1985).

    Google Scholar 

  12. [12]

    E. Panzer and R. Wulkenhaar, Lambert-W solves the noncommutative Φ4-model, Commun. Math. Phys. (2019) [arXiv:1807.02945] [INSPIRE].

  13. [13]

    F.C.S. Brown, Multiple zeta values and periods of moduli spaces \( {\mathcal{M}}_{0,n} \), Annales Sci. Ecole Norm. Sup.42 (2009) 371 [math/0606419].

  14. [14]

    E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun.188 (2015) 148 [arXiv:1403.3385] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  15. [15]

    J. de Jong, A. Hock and R. Wulkenhaar, Catalan tables and a recursion relation in noncommutative quantum field theory, arXiv:1904.11231.

  16. [16]

    H. Grosse, A. Hock and R. Wulkenhaar, A Laplacian to compute intersection numbers on \( {\overline{\mathcal{M}}}_{g,n} \)and correlation functions in NCQFT, arXiv:1903.12526 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander Hock.

Additional information

ArXiv ePrint: 1908.04543

With an appendix by Robert Seiringer, Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grosse, H., Hock, A. & Wulkenhaar, R. Solution of the self-dual Φ4 QFT-model on four-dimensional Moyal space. J. High Energ. Phys. 2020, 81 (2020). https://doi.org/10.1007/JHEP01(2020)081

Download citation

Keywords

  • Integrable Field Theories
  • Matrix Models
  • Non-Commutative Geometry