Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Effective theory approach to new physics with flavour: general framework and a leptoquark example

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 13 January 2020
  • Volume 2020, article number 67, (2020)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Effective theory approach to new physics with flavour: general framework and a leptoquark example
Download PDF
  • Marzia Bordone  ORCID: orcid.org/0000-0003-2915-10751,
  • Oscar Catà1 &
  • Thorsten Feldmann1 
  • 461 Accesses

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Extending the Standard Model with higher-dimensional operators in an effective field theory (EFT) approach provides a systematic framework to study new physics (NP) effects from a bottom-up perspective, as long as the NP scale is sufficiently large compared to the energies probed in the experimental observables. However, when taking into account the different quark and lepton flavours, the number of free parameters in- creases dramatically, which makes generic studies of the NP flavour structure infeasible. In this paper, we address this issue in view of the recently observed “flavour anomalies” in B-meson decays, which we take as a motivation to develop a general framework that allows us to systematically reduce the number of flavour parameters in the EFT. This framework can be easily used in global fits to flavour observables at Belle II and LHCb as well as in analyses of flavour-dependent collider signatures at the LHC. Our formalism represents an extension of the well-known minimal-flavour-violation approach, and uses Froggatt-Nielsen charges to define the flavour power-counting. As a relevant illustration of the formalism, we apply it to the flavour structures which could be induced by a U1 vector leptoquark, which represents one of the possible explanations for the recent hints of flavour non-universality in semileptonic B-decays. We study the phenomenological viability of this specific framework performing a fit to low-energy flavour observables.

Article PDF

Download to read the full article text

Similar content being viewed by others

Flavour alignment of New Physics in light of the (g − 2)μ anomaly

Article Open access 02 March 2022

General non-leptonic ∆F = 1 WET at the NLO in QCD

Article Open access 30 November 2021

Simplified models of flavourful leptoquarks

Article Open access 22 June 2019
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys.B 268 (1986) 621 [INSPIRE].

  2. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model lagrangian, JHEP10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  3. LHCb collaboration, Test of lepton universality using B +→ K +ℓ+ℓ−decays, Phys. Rev. Lett.113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].

  4. LHCb collaboration, Test of lepton universality with B 0→ K *0ℓ+ℓ−decays, JHEP08 (2017) 055 [arXiv:1705.05802] [INSPIRE].

  5. LHCb collaboration, Search for lepton-universality violation in B +→ K +ℓ+ℓ−decays, Phys. Rev. Lett.122 (2019) 191801 [arXiv:1903.09252] [INSPIRE].

  6. LHCb collaboration, Angular analysis of the B 0→ K *0μ +μ −decay using 3 fb −1of integrated luminosity, JHEP02 (2016) 104 [arXiv:1512.04442] [INSPIRE].

  7. BaBar collaboration, Evidence for an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \)decays, Phys. Rev. Lett.109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].

  8. BaBar collaboration, Measurement of an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \)decays and implications for charged Higgs bosons, Phys. Rev.D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].

  9. LHCb collaboration, Measurement of the ratio of branching fractions \( \mathcal{B}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathcal{B}\left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett.115 (2015) 111803 [Erratum ibid.115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].

  10. Belle collaboration, Measurement of the τ lepton polarization and R(D *) in the decay \( \overline{B}\to {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \), Phys. Rev. Lett.118 (2017) 211801 [arXiv:1612.00529] [INSPIRE].

  11. Belle collaboration, Measurement of the τ lepton polarization and R(D *) in the decay \( \overline{B}\to {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \)with one-prong hadronic τ decays at Belle, Phys. Rev.D 97 (2018) 012004 [arXiv:1709.00129] [INSPIRE].

  12. LHCb collaboration, Measurement of the ratio of the B 0→ D *−τ +ν τand B 0→ D *−μ +ν μbranching fractions using three-prong τ-lepton decays, Phys. Rev. Lett.120 (2018) 171802 [arXiv:1708.08856] [INSPIRE].

  13. LHCb collaboration, Test of lepton flavor universality by the measurement of the B 0→ D *τ +ν τbranching fraction using three-prong τ decays, Phys. Rev.D 97 (2018) 072013 [arXiv:1711.02505] [INSPIRE].

  14. Belle collaboration, Measurement of \( \mathcal{R} \)(D) and \( \mathcal{R} \)(D *) with a semileptonic tagging method, arXiv:1904.08794 [INSPIRE].

  15. G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys.B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

  16. A.J. Buras, Minimal flavor violation, Acta Phys. Polon.B 34 (2003) 5615 [hep-ph/0310208] [INSPIRE].

  17. R. Barbier et al., U(2) and minimal flavour violation in supersymmetry, Eur. Phys. J.C 71 (2011) 1725 [arXiv:1105.2296] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  18. I. de Medeiros Varzielas and G. Hiller, Clues for flavor from rare lepton and quark decays, JHEP06 (2015) 072 [arXiv:1503.01084] [INSPIRE].

    Article  MATH  Google Scholar 

  19. G. Hiller, D. Loose and K. Schönwald, Leptoquark flavor patterns & B decay anomalies, JHEP12 (2016) 027 [arXiv:1609.08895] [INSPIRE].

  20. I. de Medeiros Varzielas and J. Talbert, Simplified models of flavourful leptoquarks, Eur. Phys. J.C 79 (2019) 536 [arXiv:1901.10484] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  21. T. Feldmann and T. Mannel, Minimal flavour violation and beyond, JHEP02 (2007) 067 [hep-ph/0611095] [INSPIRE].

  22. C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys.B 147 (1979) 277 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  23. A. Smolkovič, M. Tammaro and J. Zupan, Anomaly free Froggatt-Nielsen models of flavor, JHEP10 (2019) 188 [arXiv:1907.10063] [INSPIRE].

  24. L. Di Luzio, A. Greljo and M. Nardecchia, Gauge leptoquark as the origin of B-physics anomalies, Phys. Rev.D 96 (2017) 115011 [arXiv:1708.08450] [INSPIRE].

    ADS  MATH  Google Scholar 

  25. L. Calibbi, A. Crivellin and T. Li, Model of vector leptoquarks in view of the B-physics anomalies, Phys. Rev.D 98 (2018) 115002 [arXiv:1709.00692] [INSPIRE].

    ADS  MATH  Google Scholar 

  26. R. Barbieri and A. Tesi, B-decay anomalies in Pati-Salam SU(4), Eur. Phys. J.C 78 (2018) 193 [arXiv:1712.06844] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  27. M. Blanke and A. Crivellin, B meson anomalies in a Pati-Salam model within the Randall-Sundrum background, Phys. Rev. Lett.121 (2018) 011801 [arXiv:1801.07256] [INSPIRE].

  28. L. Di Luzio et al., Maximal flavour violation: a Cabibbo mechanism for leptoquarks, JHEP11 (2018) 081 [arXiv:1808.00942] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  29. T. Faber et al., A unified leptoquark model confronted with lepton non-universality in B-meson decays, Phys. Lett.B 787 (2018) 159 [arXiv:1808.05511] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  30. J. Heeck and D. Teresi, Pati-Salam explanations of the B-meson anomalies, JHEP12 (2018) 103 [arXiv:1808.07492] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  31. A. Angelescu, D. Bečirević, D.A. Faroughy and O. Sumensari, Closing the window on single leptoquark solutions to the B-physics anomalies, JHEP10 (2018) 183 [arXiv:1808.08179] [INSPIRE].

  32. M. Schmaltz and Y.-M. Zhong, The leptoquark Hunter’s guide: large coupling, JHEP01 (2019) 132 [arXiv:1810.10017] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  33. A. Greljo, J. Martin Camalich and J.D. Ruiz-Álvarez, Mono-τ signatures at the LHC constrain explanations of b-decay anomalies, Phys. Rev. Lett.122 (2019) 131803 [arXiv:1811.07920] [INSPIRE].

  34. B. Fornal, S.A. Gadam and B. Grinstein, Left-right SU(4) vector leptoquark model for flavor anomalies, Phys. Rev.D 99 (2019) 055025 [arXiv:1812.01603] [INSPIRE].

  35. M.J. Baker, J. Fuentes-Martín, G. Isidori and M. König, High-p Tsignatures in vector–leptoquark models, Eur. Phys. J.C 79 (2019) 334 [arXiv:1901.10480] [INSPIRE].

  36. C. Cornella, J. Fuentes-Martin and G. Isidori, Revisiting the vector leptoquark explanation of the B-physics anomalies, JHEP07 (2019) 168 [arXiv:1903.11517] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  37. L. Da Rold and F. Lamagna, A vector leptoquark for the B-physics anomalies from a composite GUT, JHEP12 (2019) 112 [arXiv:1906.11666] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. M. Bordone, C. Cornella, J. Fuentes-Martin and G. Isidori, A three-site gauge model for flavor hierarchies and flavor anomalies, Phys. Lett.B 779 (2018) 317 [arXiv:1712.01368] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  39. M. Bordone, C. Cornella, J. Fuentes-Martín and G. Isidori, Low-energy signatures of the PS3model: from B-physics anomalies to LFV, JHEP10 (2018) 148 [arXiv:1805.09328] [INSPIRE].

  40. D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, B-physics anomalies: a guide to combined explanations, JHEP11 (2017) 044 [arXiv:1706.07808] [INSPIRE].

    Article  ADS  Google Scholar 

  41. R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP10 (2015) 184 [arXiv:1505.05164] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  42. N. Assad, B. Fornal and B. Grinstein, Baryon number and lepton universality violation in leptoquark and diquark models, Phys. Lett.B 777 (2018) 324 [arXiv:1708.06350] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  43. A. Crivellin, C. Greub, D. Müller and F. Saturnino, Importance of loop effects in explaining the accumulated evidence for new physics in B decays with a vector leptoquark, Phys. Rev. Lett.122 (2019) 011805 [arXiv:1807.02068] [INSPIRE].

  44. R. Alonso, B. Grinstein and J. Martin Camalich, SU(2) × U(1) gauge invariance and the shape of new physics in rare B decays, Phys. Rev. Lett.113 (2014) 241802 [arXiv:1407.7044] [INSPIRE].

    Article  ADS  Google Scholar 

  45. O. Catà and M. Jung, Signatures of a nonstandard Higgs boson from flavor physics, Phys. Rev.D 92 (2015) 055018 [arXiv:1505.05804] [INSPIRE].

  46. M. Algueró et al., Emerging patterns of new physics with and without Lepton Flavour Universal contributions, Eur. Phys. J.C 79 (2019) 714 [arXiv:1903.09578] [INSPIRE].

  47. J. Aebischer et al., B-decay discrepancies after Moriond 2019, arXiv:1903.10434 [INSPIRE].

  48. M. Ciuchini et al., New physics in b → sℓ +ℓ −confronts new data on lepton universality, Eur. Phys. J.C 79 (2019) 719 [arXiv:1903.09632] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  49. A.K. Alok et al., Continuing search for new physics in b → sμμ decays: two operators at a time, JHEP06 (2019) 089 [arXiv:1903.09617].

    Article  ADS  MATH  Google Scholar 

  50. S. Fajfer, J.F. Kamenik and I. Nisandzic, On the \( B\to {D}^{\ast}\tau {\overline{\nu}}_{\tau } \)sensitivity to new physics, Phys. Rev.D 85 (2012) 094025 [arXiv:1203.2654] [INSPIRE].

  51. MILC collaboration, B → Dℓν form factors at nonzero recoil and |V cb| from 2 + 1-flavor lattice QCD, Phys. Rev.D 92 (2015) 034506 [arXiv:1503.07237] [INSPIRE].

  52. HPQCD collaboration, B → Dlν form factors at nonzero recoil and extraction of |V cb|, Phys. Rev.D 92 (2015) 054510 [Erratum ibid.D 93 (2016) 119906] [arXiv:1505.03925] [INSPIRE].

  53. J. Fuentes-Martín, G. Isidori, J. Pagès and K. Yamamoto, With or without U(2)? Probing non-standard flavor and helicity structures in semileptonic B decays, Phys. Lett.B 800 (2020) 135080 [arXiv:1909.02519] [INSPIRE].

  54. C. Murgui, A. Peñuelas, M. Jung and A. Pich, Global fit to b → cτν transitions, JHEP09 (2019) 103 [arXiv:1904.09311] [INSPIRE].

  55. R.-X. Shi et al., Revisiting the new-physics interpretation of the b → cτν data, JHEP12 (2019) 065 [arXiv:1905.08498] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  56. J. Buchner et al., X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue, Astron. Astrophys.564 (2014) A125 [arXiv:1402.0004] [INSPIRE].

    Article  MATH  Google Scholar 

  57. UTfit collaboration, http://www.utfit.org/UTfit/WebHome.

  58. Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001.

  59. LHCb collaboration, Implications of LHCb measurements and future prospects, Eur. Phys. J.C 73 (2013) 2373 [arXiv:1208.3355] [INSPIRE].

  60. Belle-II collaboration, The Belle II physics book, arXiv:1808.10567 [INSPIRE].

  61. A. Cerri et al., Report from working group 4, CERN Yellow Rep. Monogr.7 (2019) 867 [arXiv:1812.07638] [INSPIRE].

    MATH  Google Scholar 

  62. LHCb collaboration, Search for the lepton-flavour-violating decays \( {B}_s^0 \)→ τ ±μ ∓and B 0→ τ ±μ ∓, Phys. Rev. Lett.123 (2019) 211801 [arXiv:1905.06614] [INSPIRE].

  63. BaBar collaboration, Searches for the decays B 0→ ℓ ±τ ∓and B +→ ℓ +ν (l = e, μ) using hadronic tag reconstruction, Phys. Rev.D 77 (2008) 091104 [arXiv:0801.0697] [INSPIRE].

  64. LHCb collaboration, Physics case for an LHCb Upgrade II — Opportunities in flavour physics and beyond, in the HL-LHC era, arXiv:1808.08865 [INSPIRE].

  65. LHCb collaboration, Search for the lepton-flavor violating decays \( {B}_s^0 \)→ e ±μ ∓and B 0→ e ±μ ∓, Phys. Rev. Lett.111 (2013) 141801 [arXiv:1307.4889] [INSPIRE].

  66. BNL collaboration, New limit on muon and electron lepton number violation from K0(L) → μ ±e ∓decay, Phys. Rev. Lett.81 (1998) 5734 [hep-ex/9811038] [INSPIRE].

  67. LHCb collaboration, Search for the decays \( {B}_s^0 \)→ τ +τ −and B 0→ τ +τ − , Phys. Rev. Lett.118 (2017) 251802 [arXiv:1703.02508] [INSPIRE].

  68. D. Bigi and P. Gambino, Revisiting B → Dℓν, Phys. Rev.D 94 (2016) 094008 [arXiv:1606.08030] [INSPIRE].

  69. F.U. Bernlochner, Z. Ligeti, M. Papucci and D.J. Robinson, Combined analysis of semileptonic B decays to D and D *: R(D (*)), |V cb| and new physics, Phys. Rev.D 95 (2017) 115008 [arXiv:1703.05330] [INSPIRE].

    ADS  Google Scholar 

  70. S. Jaiswal, S. Nandi and S.K. Patra, Extraction of |V cb| from B → D (∗)ℓν ℓand the standard model predictions of R(D (*)), JHEP12 (2017) 060 [arXiv:1707.09977] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  71. Heavy Flavor Averaging Group collaboration, Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018, arXiv:1909.12524, updated results and plots available at https://hflav.web.cern.ch/.

  72. D. Bigi, P. Gambino and S. Schacht, R(D *), |V cb| and the heavy quark symmetry relations between form factors, JHEP11 (2017) 061 [arXiv:1707.09509] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  73. M. Jung and D.M. Straub, Constraining new physics in b → cℓν transitions, JHEP01 (2019) 009 [arXiv:1801.01112] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  74. A.J. Buras, J. Girrbach-Noe, C. Niehoff and D.M. Straub, \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \)decays in the Standard Model and beyond, JHEP02 (2015) 184 [arXiv:1409.4557] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. F. Feruglio, P. Paradisi and A. Pattori, On the importance of electroweak corrections for B anomalies, JHEP09 (2017) 061 [arXiv:1705.00929] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  76. G. Buchalla and A.J. Buras, The rare decays \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \)and K L→ μ +μ −beyond leading logarithms, Nucl. Phys.B 412 (1994) 106 [hep-ph/9308272] [INSPIRE].

  77. M. Bordone, D. Buttazzo, G. Isidori and J. Monnard, Probing lepton flavour universality with \( {K}^{+}\to \pi \nu \overline{\nu} \)decays, Eur. Phys. J.C 77 (2017) 618 [arXiv:1705.10729] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, D-57068, Siegen, Germany

    Marzia Bordone, Oscar Catà & Thorsten Feldmann

Authors
  1. Marzia Bordone
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Oscar Catà
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Thorsten Feldmann
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Marzia Bordone.

Additional information

ArXiv ePrint: 1910.02641

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordone, M., Catà, O. & Feldmann, T. Effective theory approach to new physics with flavour: general framework and a leptoquark example. J. High Energ. Phys. 2020, 67 (2020). https://doi.org/10.1007/JHEP01(2020)067

Download citation

  • Received: 14 October 2019

  • Accepted: 19 December 2019

  • Published: 13 January 2020

  • DOI: https://doi.org/10.1007/JHEP01(2020)067

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Effective Field Theories
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature