Skip to main content

One-form superfluids & magnetohydrodynamics

A preprint version of the article is available at arXiv.


We use the framework of generalised global symmetries to study various hydrodynamic regimes of hot electromagnetism. We formulate the hydrodynamic theories with an unbroken or a spontaneously broken U(1) one-form symmetry. The latter of these describes a one-form superfluid, which is characterised by a vector Goldstone mode and a two-form superfluid velocity. Two special limits of this theory have been studied in detail: the string fluid limit where the U(1) one-form symmetry is partly restored, and the electric limit in which the symmetry is completely broken. The transport properties of these theories are investigated in depth by studying the constraints arising from the second law of thermodynamics and Onsager’s relations at first order in derivatives. We also construct a hydrostatic effective action for the Goldstone modes in these theories and use it to characterise the space of all equilibrium configurations. To make explicit contact with hot electromagnetism, the traditional treatment of magnetohydrodynamics, where the electromagnetic photon is incorporated as dynamical degrees of freedom, is extended to include parity-violating contributions. We argue that the chemical potential and electric fields are not independently dynamical in magnetohydrodynamics, and illustrate how to eliminate these within the hydrodynamic derivative expansion using Maxwell’s equations. Additionally, a new hydrodynamic theory of non-conducting, but polarised, plasmas is formulated, focusing primarily on the magnetically dominated sector. Finally, it is shown that the different limits of one-form superfluids formulated in terms of generalised global symmetries are exactly equivalent to magnetohydrodynamics and the hydrodynamics of non-conducting plasmas at the non-linear level.


  1. P. Davidson, An introduction to magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge U.K. (2001).

  2. J. Goedbloed, J. Goedbloed and S. Poedts, Principles of magnetohydrodynamics: with applications to laboratory and astrophysical plasmas, Cambridge University Press, Cambridge U.K. (2004).

    Book  MATH  Google Scholar 

  3. J. Hernandez and P. Kovtun, Relativistic magnetohydrodynamics, JHEP05 (2017) 001 [arXiv:1703.08757] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A theory of first order dissipative superfluid dynamics, JHEP05 (2014) 147 [arXiv:1105.3733] [INSPIRE].

    ADS  Article  Google Scholar 

  5. S. Bhattacharyya, Constraints on the second order transport coefficients of an uncharged fluid, JHEP07 (2012) 104 [arXiv:1201.4654] [INSPIRE].

    ADS  Google Scholar 

  6. P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys.A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  7. K. Jensen et al., Towards hydrodynamics without an entropy current, Phys. Rev. Lett.109 (2012) 101601 [arXiv:1203.3556] [INSPIRE].

    ADS  Article  Google Scholar 

  8. N. Banerjee et al., Constraints on fluid dynamics from equilibrium partition functions, JHEP09 (2012) 046 [arXiv:1203.3544] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. F.M. Haehl, R. Loganayagam and M. Rangamani, The eightfold way to dissipation, Phys. Rev. Lett.114 (2015) 201601 [arXiv:1412.1090] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  10. F.M. Haehl, R. Loganayagam and M. Rangamani, Adiabatic hydrodynamics: the eightfold way to dissipation, JHEP05 (2015) 060 [arXiv:1502.00636] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    ADS  Article  Google Scholar 

  12. M. Rangamani, Gravity and hydrodynamics: lectures on the fluid-gravity correspondence, Class. Quant. Grav.26 (2009) 224003 [arXiv:0905.4352] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. P. Glorioso, H. Liu and S. Rajagopal, Global anomalies, discrete symmetries and hydrodynamic effective actions, JHEP01 (2019) 043 [arXiv:1710.03768] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. F.M. Haehl, R. Loganayagam and M. Rangamani, Effective action for relativistic hydrodynamics: fluctuations, dissipation and entropy inflow, JHEP10 (2018) 194 [arXiv:1803.11155] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. K. Jensen, R. Marjieh, N. Pinzani-Fokeeva and A. Yarom, A panoply of Schwinger-Keldysh transport, SciPost Phys.5 (2018) 053 [arXiv:1804.04654] [INSPIRE].

    ADS  Article  Google Scholar 

  16. J. Armas, J. Bhattacharya and N. Kundu, Surface transport in plasma-balls, JHEP06 (2016) 015 [arXiv:1512.08514] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. J. Armas, J. Bhattacharya, A. Jain and N. Kundu, On the surface of superfluids, JHEP06 (2017) 090 [arXiv:1612.08088] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. K. Jensen, Aspects of hot Galilean field theory, JHEP04 (2015) 123 [arXiv:1411.7024] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. N. Banerjee, S. Dutta and A. Jain, Null fluids — A new viewpoint of galilean fluids, Phys. Rev.D 93 (2016) 105020 [arXiv:1509.04718] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. D. Schubring, Dissipative string fluids, Phys. Rev.D 91 (2015) 043518 [arXiv:1412.3135] [INSPIRE].

  21. S. Grozdanov, D.M. Hofman and N. Iqbal, Generalized global symmetries and dissipative magnetohydrodynamics, Phys. Rev.D 95 (2017) 096003 [arXiv:1610.07392] [INSPIRE].

  22. J. Armas, J. Gath, A. Jain and A.V. Pedersen, Dissipative hydrodynamics with higher-form symmetry, JHEP05 (2018) 192 [arXiv:1803.00991] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. S. Grozdanov and N. Poovuttikul, Generalized global symmetries in states with dynamical defects: The case of the transverse sound in field theory and holography, Phys. Rev.D 97 (2018) 106005 [arXiv:1801.03199] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. J. Armas and A. Jain, Magnetohydrodynamics as superfluidity, Phys. Rev. Lett.122 (2019) 141603 [arXiv:1808.01939] [INSPIRE].

    ADS  Article  Google Scholar 

  25. S. Grozdanov, A. Lucas and N. Poovuttikul, Holography and hydrodynamics with weakly broken symmetries, Phys. Rev.D 99 (2019) 086012 [arXiv:1810.10016] [INSPIRE].

  26. D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. C.F. Gammie, J.C. McKinney and G. Toth, HARM: a numerical scheme for general relativistic magnetohydrodynamics, Astrophys. J.589 (2003) 444 [astro-ph/0301509] [INSPIRE].

  28. E. Lake, Higher-form symmetries and spontaneous symmetry breaking, arXiv:1802.07747 [INSPIRE].

  29. D.M. Hofman and N. Iqbal, Goldstone modes and photonization for higher form symmetries, SciPost Phys.6 (2019) 006 [arXiv:1802.09512] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  30. P. Glorioso and D.T. Son, Effective field theory of magnetohydrodynamics from generalized global symmetries, arXiv:1811.04879 [INSPIRE].

  31. L. Landau and E. Lifshitz, Fluid mechanics, Pergamon Press, U.K. (2013).

    Google Scholar 

  32. R. Loganayagam, Anomaly induced transport in arbitrary dimensions, arXiv:1106.0277 [INSPIRE].

  33. A. Jain, Theory of non-Abelian superfluid dynamics, Phys. Rev.D 95 (2017) 121701 [arXiv:1610.05797] [INSPIRE].

    ADS  Google Scholar 

  34. A. Jain, A universal framework for hydrodynamics, Ph.D. thesis, Durham University, Durham, U.K. (2018).

  35. M.M. Caldarelli, R. Emparan and B. Van Pol, Higher-dimensional rotating charged black holes, JHEP04 (2011) 013 [arXiv:1012.4517] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  36. D.T. Son and A.O. Starinets, Viscosity, black holes, and quantum field theory, Ann. Rev. Nucl. Part. Sci.57 (2007) 95 [arXiv:0704.0240].

    ADS  Article  Google Scholar 

  37. S. Grozdanov and N. Poovuttikul, Generalised global symmetries in holography: magnetohydrodynamic waves in a strongly interacting plasma, JHEP04 (2019) 141 [arXiv:1707.04182] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. P. Kovtun, Thermodynamics of polarized relativistic matter, JHEP07 (2016) 028 [arXiv:1606.01226] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. J. Armas, J. Gath and N.A. Obers, Black branes as piezoelectrics, Phys. Rev. Lett.109 (2012) 241101 [arXiv:1209.2127] [INSPIRE].

    ADS  Article  Google Scholar 

  40. J. Armas, J. Gath and N.A. Obers, Electroelasticity of charged black branes, JHEP10 (2013) 035 [arXiv:1307.0504] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  41. J. Bhattacharya, S. Bhattacharyya and S. Minwalla, Dissipative superfluid dynamics from gravity, JHEP04 (2011) 125 [arXiv:1101.3332] [INSPIRE].

    ADS  Article  Google Scholar 

  42. J. Armas et al., Forced fluid dynamics from blackfolds in general supergravity backgrounds, JHEP10 (2016) 154 [arXiv:1606.09644] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. H. Liu and P. Glorioso, Lectures on non-equilibrium effective field theories and fluctuating hydrodynamics, PoS(TASI2017)008 [arXiv:1805.09331] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jay Armas.

Additional information

ArXiv ePrint: 1811.04913

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Armas, J., Jain, A. One-form superfluids & magnetohydrodynamics. J. High Energ. Phys. 2020, 41 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • Effective Field Theories
  • Global Symmetries
  • Spontaneous Symmetry Breaking
  • Holography and quark-gluon plasmas