Nonlinear symmetries of perfectly invisible PT-regularized conformal and superconformal mechanics systems

Abstract

We investigate how the Lax-Novikov integral in the perfectly invisible PT-regularized zero-gap quantum conformal and superconformal mechanics systems affects on their (super)-conformal symmetries. We show that the expansion of the conformal symmetry with this integral results in a nonlinearly extended generalized Shrödinger algebra. The PT-regularized superconformal mechanics systems in the phase of the unbroken exotic nonlinear \( \mathcal{N} \) = 4 super-Poincaré symmetry are described by nonlinearly super-extended Schrödinger algebra with the osp(2|2) sub-superalgebra. In the partially broken phase, the scaling dimension of all odd integrals is indefinite, and the osp(2|2) is not contained as a sub-superalgebra.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    V. de Alfaro, S. Fubini and G. Furlan, Conformal Invariance in Quantum Mechanics, Nuovo Cim. A 34 (1976) 569 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    F. Calogero, Solution of the one-dimensional N body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys. 12 (1971) 419 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    V.P. Akulov and A.I. Pashnev, Quantum superconformal model in (1, 2) space, Theor. Math. Phys. 56 (1983) 862 [INSPIRE].

    Article  Google Scholar 

  4. [4]

    S. Fubini and E. Rabinovici, Superconformal quantum mechanics, Nucl. Phys. B 245 (1984) 17 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    E.A. Ivanov, S.O. Krivonos and V.M. Leviant, Geometry of Conformal Mechanics, J. Phys. A 22 (1989) 345 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  6. [6]

    E.A. Ivanov, S.O. Krivonos and V.M. Leviant, Geometric superfield approach to superconformal mechanics, J. Phys. A 22 (1989) 4201 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  7. [7]

    D.Z. Freedman and P.F. Mende, An Exactly Solvable N Particle System in Supersymmetric Quantum Mechanics, Nucl. Phys. B 344 (1990) 317 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    N. Wyllard, (Super)conformal many body quantum mechanics with extended supersymmetry, J. Math. Phys. 41 (2000) 2826 [hep-th/9910160] [INSPIRE].

  9. [9]

    S. Bellucci, A. Galajinsky, E. Ivanov and S. Krivonos, AdS 2 /CFT 1 , canonical transformations and superconformal mechanics, Phys. Lett. B 555 (2003) 99 [hep-th/0212204] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  10. [10]

    S. Bellucci, A. Galajinsky and S. Krivonos, New many-body superconformal models as reductions of simple composite systems, Phys. Rev. D 68 (2003) 064010 [hep-th/0304087] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    S. Bellucci, A.V. Galajinsky and E. Latini, New insight into WDVV equation, Phys. Rev. D 71 (2005) 044023 [hep-th/0411232] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    A. Galajinsky, O. Lechtenfeld and K. Polovnikov, Calogero models and nonlocal conformal transformations, Phys. Lett. B 643 (2006) 221 [hep-th/0607215] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    A. Galajinsky, O. Lechtenfeld and K. Polovnikov, N = 4 superconformal Calogero models, JHEP 11 (2007) 008 [arXiv:0708.1075] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    S. Krivonos and O. Lechtenfeld, Many-particle mechanics with D(2, 1 : α) superconformal symmetry, JHEP 02 (2011) 042 [arXiv:1012.4639] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  17. [17]

    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    P. Claus, M. Derix, R. Kallosh, J. Kumar, P.K. Townsend and A. Van Proeyen, Black holes and superconformal mechanics, Phys. Rev. Lett. 81 (1998) 4553 [hep-th/9804177] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    J.A. de Azcarraga, J.M. Izquierdo, J.C. Perez Bueno and P.K. Townsend, Superconformal mechanics and nonlinear realizations, Phys. Rev. D 59 (1999) 084015 [hep-th/9810230] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. [20]

    G.W. Gibbons and P.K. Townsend, Black holes and Calogero models, Phys. Lett. B 454 (1999) 187 [hep-th/9812034] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    J. Michelson and A. Strominger, Superconformal multiblack hole quantum mechanics, JHEP 09 (1999) 005 [hep-th/9908044] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  22. [22]

    G.F. de Teramond, H.G. Dosch and S.J. Brodsky, Baryon Spectrum from Superconformal Quantum Mechanics and its Light-Front Holographic Embedding, Phys. Rev. D 91 (2015) 045040 [arXiv:1411.5243] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    S.J. Brodsky, G.F. de Téramond, H.G. Dosch and C. Lorcé, Universal Effective Hadron Dynamics from Superconformal Algebra, Phys. Lett. B 759 (2016) 171 [arXiv:1604.06746] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  24. [24]

    E. D’Hoker and L. Vinet, Dynamical Supersymmetry of the Magnetic Monopole and the 1/r 2 Potential, Commun. Math. Phys. 97 (1985) 391 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  25. [25]

    J. Michelson and A. Strominger, The Geometry of (super)conformal quantum mechanics, Commun. Math. Phys. 213 (2000) 1 [hep-th/9907191] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    S. Cacciatori, D. Klemm and D. Zanon, W algebras, conformal mechanics and black holes, Class. Quant. Grav. 17 (2000) 1731 [hep-th/9910065] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    R. Britto-Pacumio, J. Michelson, A. Strominger and A. Volovich, Lectures on Superconformal Quantum Mechanics and Multi-Black Hole Moduli Spaces, NATO Sci. Ser. C 556 (2000) 255 [hep-th/9911066] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  28. [28]

    G. Papadopoulos, Conformal and superconformal mechanics, Class. Quant. Grav. 17 (2000) 3715 [hep-th/0002007] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    E.E. Donets, A. Pashnev, V.O. Rivelles, D.P. Sorokin and M. Tsulaia, N = 4 superconformal mechanics and the potential structure of AdS spaces, Phys. Lett. B 484 (2000) 337 [hep-th/0004019] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    M.S. Plyushchay, Monopole Chern-Simons term: Charge monopole system as a particle with spin, Nucl. Phys. B 589 (2000) 413 [hep-th/0004032] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. [31]

    P.K. Ghosh, Conformal symmetry and the nonlinear Schrödinger equation, Phys. Rev. A 65 (2002) 012103 [cond-mat/0102488] [INSPIRE].

  32. [32]

    M. Günaydin, K. Koepsell and H. Nicolai, The Minimal unitary representation of E 8(8), Adv. Theor. Math. Phys. 5 (2002) 923 [hep-th/0109005] [INSPIRE].

    Article  MATH  Google Scholar 

  33. [33]

    B. Pioline and A. Waldron, Quantum cosmology and conformal invariance, Phys. Rev. Lett. 90 (2003) 031302 [hep-th/0209044] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. [34]

    H.E. Camblong and C.R. Ordonez, Anomaly in conformal quantum mechanics: From molecular physics to black holes, Phys. Rev. D 68 (2003) 125013 [hep-th/0303166] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  35. [35]

    C. Leiva and M.S. Plyushchay, Conformal symmetry of relativistic and nonrelativistic systems and AdS/CFT correspondence, Annals Phys. 307 (2003) 372 [hep-th/0301244] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  36. [36]

    B. Pioline and A. Waldron, Automorphic forms: A Physicist’s survey, in Proceedings, Les Houches School of Physics: Frontiers in Number Theory, Physics and Geometry II: On Conformal Field Theories, Discrete Groups and Renormalization, Les Houches, France, March 9–21, 2003, pp. 277–302, (2007) [DOI:https://doi.org/10.1007/978-3-540-30308-4_7] [hep-th/0312068] [INSPIRE].

  37. [37]

    D. Gaiotto, A. Strominger and X. Yin, Superconformal black hole quantum mechanics, JHEP 11 (2005) 017 [hep-th/0412322] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    S. Meljanac and A. Samsarov, Universal properties of conformal quantum many-body systems, Phys. Lett. B 613 (2005) 221 [Erratum ibid. B 620 (2005) 200] [hep-th/0503174] [INSPIRE].

  39. [39]

    C. Duval, G.W. Gibbons and P. Horvathy, Celestial mechanics, conformal structures and gravitational waves, Phys. Rev. D 43 (1991) 3907 [hep-th/0512188] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  40. [40]

    A. Anabalon, J. Gomis, K. Kamimura and J. Zanelli, N = 4 superconformal mechanics as a non linear realization, JHEP 10 (2006) 068 [hep-th/0607124] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    M. Günaydin, A. Neitzke, B. Pioline and A. Waldron, Quantum Attractor Flows, JHEP 09 (2007) 056 [arXiv:0707.0267] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  42. [42]

    T. Hakobyan and A. Nersessian, Lobachevsky geometry of (super)conformal mechanics, Phys. Lett. A 373 (2009) 1001 [arXiv:0803.1293] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. [43]

    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. [44]

    F. Correa, V. Jakubsky and M.S. Plyushchay, Aharonov-Bohm effect on AdS 2 and nonlinear supersymmetry of reflectionless Poschl-Teller system, Annals Phys. 324 (2009) 1078 [arXiv:0809.2854] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  45. [45]

    P.D. Alvarez, J.L. Cortes, P.A. Horvathy and M.S. Plyushchay, Super-extended noncommutative Landau problem and conformal symmetry, JHEP 03 (2009) 034 [arXiv:0901.1021] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. [46]

    A. Bagchi and R. Gopakumar, Galilean Conformal Algebras and AdS/CFT, JHEP 07 (2009) 037 [arXiv:0902.1385] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. [47]

    F. Correa, H. Falomir, V. Jakubsky and M.S. Plyushchay, Hidden superconformal symmetry of spinless Aharonov-Bohm system, J. Phys. A 43 (2010) 075202 [arXiv:0906.4055] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  48. [48]

    T. Hakobyan, S. Krivonos, O. Lechtenfeld and A. Nersessian, Hidden symmetries of integrable conformal mechanical systems, Phys. Lett. A 374 (2010) 801 [arXiv:0908.3290] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  49. [49]

    C. Chamon, R. Jackiw, S.-Y. Pi and L. Santos, Conformal quantum mechanics as the CFT 1 dual to AdS 2, Phys. Lett. B 701 (2011) 503 [arXiv:1106.0726] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    Z. Kuznetsova and F. Toppan, D-module Representations of N = 2, 4, 8 Superconformal Algebras and Their Superconformal Mechanics, J. Math. Phys. 53 (2012) 043513 [arXiv:1112.0995] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  51. [51]

    S. Fedoruk, E. Ivanov and O. Lechtenfeld, Superconformal Mechanics, J. Phys. A 45 (2012) 173001 [arXiv:1112.1947] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  52. [52]

    K. Andrzejewski, J. Gonera and P. Maślanka, Nonrelativistic conformal groups and their dynamical realizations, Phys. Rev. D 86 (2012) 065009 [arXiv:1204.5950] [INSPIRE].

    ADS  Google Scholar 

  53. [53]

    J. Gonera, Conformal mechanics, Annals Phys. 335 (2013) 61 [arXiv:1211.4403] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  54. [54]

    J. Molina-Vilaplana and G. Sierra, An xp model on AdS 2 spacetime, Nucl. Phys. B 877 (2013) 107 [arXiv:1212.2436] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  55. [55]

    M.S. Plyushchay and A. Wipf, Particle in a self-dual dyon background: hidden free nature and exotic superconformal symmetry, Phys. Rev. D 89 (2014) 045017 [arXiv:1311.2195] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    S.J. Brodsky, G.F. de Teramond, H.G. Dosch and J. Erlich, Light-Front Holographic QCD and Emerging Confinement, Phys. Rept. 584 (2015) 1 [arXiv:1407.8131] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  57. [57]

    K. Andrzejewski, J. Gonera, P. Kosiński and P. Maślanka, On dynamical realizations of l-conformal Galilei groups, Nucl. Phys. B 876 (2013) 309 [arXiv:1305.6805] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  58. [58]

    M. Masuku and J.P. Rodrigues, De Alfaro, Fubini and Furlan from multi Matrix Systems, JHEP 12 (2015) 175 [arXiv:1509.06719] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  59. [59]

    I. Masterov, Remark on higher-derivative mechanics with l-conformal Galilei symmetry, J. Math. Phys. 57 (2016) 092901 [arXiv:1607.02693] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  60. [60]

    K. Andrzejewski, Quantum conformal mechanics emerging from unitary representations of SL(2, ℝ), Annals Phys. 367 (2016) 227 [arXiv:1506.05596] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  61. [61]

    R. Bonezzi, O. Corradini, E. Latini and A. Waldron, Quantum Mechanics and Hidden Superconformal Symmetry, Phys. Rev. D 96 (2017) 126005 [arXiv:1709.10135] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  62. [62]

    J. Mateos Guilarte and M.S. Plyushchay, Perfectly invisible \( \mathcal{P}\mathcal{T} \) -symmetric zero-gap systems, conformal field theoretical kinks and exotic nonlinear supersymmetry, JHEP 12 (2017) 061 [arXiv:1710.00356] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  63. [63]

    L. Inzunza and M.S. Plyushchay, Hidden superconformal symmetry: Where does it come from?, Phys. Rev. D 97 (2018) 045002 [arXiv:1711.00616] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  64. [64]

    H. Airault, H.P. McKean and J. Moser, Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem, Commun. Pure Appl. Math. 30 (1977) 95.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  65. [65]

    M. Adler and J. Moser, On a Class of Polynomials Connected with the Korteweg-De Vries Equation, Commun. Math. Phys. 61 (1978) 1 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  66. [66]

    A. Gorsky and N. Nekrasov, Hamiltonian systems of Calogero type and two-dimensional Yang-Mills theory, Nucl. Phys. B 414 (1994) 213 [hep-th/9304047] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  67. [67]

    J.J. Duistermaat and F.A. Grünbaum, Differential equations in the spectral parameter, Commun. Math. Phys. 103 (1986) 177.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  68. [68]

    A.P. Veselov, Huygens’ principle and integrability, Prog. Math. 169 (1998) 259.

    MathSciNet  MATH  Google Scholar 

  69. [69]

    S.P. Novikov, S.V. Manakov, L.P. Pitaevskii and V.E. Zakharov, Theory of Solitons, Plenum, New York (1984).

    Google Scholar 

  70. [70]

    I.M. Krichever, Baker-Akhiezer functions and integrable systems, in Integrability. The Seiberg-Witten and Whitham Equations, H.W. Braden and I.M. Krichever eds., Gordon and Breach Science Publishers, Amsterdam (2000).

  71. [71]

    E.D. Belokolos, A.I. Bobenko, V.Z. Enol’skii, A.R. Its and V.B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin (1994).

    Google Scholar 

  72. [72]

    F. Correa and M.S. Plyushchay, Hidden supersymmetry in quantum bosonic systems, Annals Phys. 322 (2007) 2493 [hep-th/0605104] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  73. [73]

    F. Correa, L.-M. Nieto and M.S. Plyushchay, Hidden nonlinear supersymmetry of finite-gap Lame equation, Phys. Lett. B 644 (2007) 94 [hep-th/0608096] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  74. [74]

    J.L. Burchnall and T.W. Chaundy, Commutative ordinary differential operators, Proc. Lond. Math. Soc. s2-21 (1923) 420 [Proc. Roy. Soc. Lond. A 118 (1928) 557].

  75. [75]

    E.L. Ince, Ordinary differential equations, Dover (1956).

  76. [76]

    F. Correa, V. Jakubsky, L.-M. Nieto and M.S. Plyushchay, Self-isospectrality, special supersymmetry and their effect on the band structure, Phys. Rev. Lett. 101 (2008) 030403 [arXiv:0801.1671] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  77. [77]

    A. Arancibia, J. Mateos Guilarte and M.S. Plyushchay, Effect of scalings and translations on the supersymmetric quantum mechanical structure of soliton systems, Phys. Rev. D 87 (2013) 045009 [arXiv:1210.3666] [INSPIRE].

    ADS  Google Scholar 

  78. [78]

    C. Leiva and M.S. Plyushchay, Superconformal mechanics and nonlinear supersymmetry, JHEP 10 (2003) 069 [hep-th/0304257] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  79. [79]

    F. Correa, M.A. del Olmo and M.S. Plyushchay, On Hidden broken nonlinear superconformal symmetry of conformal mechanics and nature of double nonlinear superconformal symmetry, Phys. Lett. B 628 (2005) 157 [hep-th/0508223] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  80. [80]

    C.M. Bender, Making sense of non-Hermitian Hamiltonians, Rept. Prog. Phys. 70 (2007) 947 [hep-th/0703096] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  81. [81]

    A. Mostafazadeh, Pseudo-Hermitian Representation of Quantum Mechanics, Int. J. Geom. Meth. Mod. Phys. 7 (2010) 1191 [arXiv:0810.5643] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  82. [82]

    E.P. Wigner, Normal form of antiunitary operators, J. Math. Phys. 1 (1960) 409.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  83. [83]

    A. Arancibia, F. Correa, V. Jakubský, J. Mateos Guilarte and M.S. Plyushchay, Soliton defects in one-gap periodic system and exotic supersymmetry, Phys. Rev. D 90 (2014) 125041 [arXiv:1410.3565] [INSPIRE].

    ADS  Google Scholar 

  84. [84]

    A. Arancibia and M.S. Plyushchay, Chiral asymmetry in propagation of soliton defects in crystalline backgrounds, Phys. Rev. D 92 (2015) 105009 [arXiv:1507.07060] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  85. [85]

    C.M. Bender and S. Boettcher, Real spectra in nonHermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80 (1998) 5243 [physics/9712001] [INSPIRE].

  86. [86]

    P. Dorey, C. Dunning and R. Tateo, Spectral equivalences, Bethe Ansatz equations and reality properties in \( \mathcal{P}\mathcal{T} \) -symmetric quantum mechanics, J. Phys. A 34 (2001) 5679 [hep-th/0103051] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  87. [87]

    P. Dorey, C. Dunning and R. Tateo, Supersymmetry and the spontaneous breakdown of \( \mathcal{P}\mathcal{T} \) symmetry, J. Phys. A 34 (2001) L391 [hep-th/0104119] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  88. [88]

    M. Znojil, \( \mathcal{P}\mathcal{T} \) -symmetric harmonic oscillators, Phys. Lett. A 259 (1999) 220 [quant-ph/9905020] [INSPIRE].

  89. [89]

    F. Correa and A. Fring, Regularized degenerate multi-solitons, JHEP 09 (2016) 008 [arXiv:1605.06371] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  90. [90]

    A. Fring and M. Znojil, \( \mathcal{P}\mathcal{T} \) -symmetric deformations of Calogero models, J. Phys. A 41 (2008) 194010 [arXiv:0802.0624] [INSPIRE].

    ADS  MATH  Google Scholar 

  91. [91]

    F. Correa and O. Lechtenfeld, \( \mathcal{P}\mathcal{T} \) deformation of angular Calogero models, JHEP 11 (2017) 122 [arXiv:1705.05425] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  92. [92]

    R. El-Ganainy, K.G. Makris, M. Khajavikhan, Z.H. Musslimani, S. Rotter and D.N. Christodoulides, Non-Hermitian physics and PT symmetry, Nat. Phys. 14 (2018) 11.

    Article  Google Scholar 

  93. [93]

    J.F. Cariñena and M.S. Plyushchay, ABC of ladder operators for rationally extended quantum harmonic oscillator systems, J. Phys. A 50 (2017) 275202 [arXiv:1701.08657] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  94. [94]

    J.F. Cariñena, L. Inzunza and M.S. Plyushchay, Rational deformations of conformal mechanics, Phys. Rev. D 98 (2018) 026017 [arXiv:1707.07357] [INSPIRE].

    ADS  Google Scholar 

  95. [95]

    A. Arancibia and M.S. Plyushchay, Extended supersymmetry of the self-isospectral crystalline and soliton chains, Phys. Rev. D 85 (2012) 045018 [arXiv:1111.0600] [INSPIRE].

    ADS  Google Scholar 

  96. [96]

    S.P. Novikov, The periodic problem for the Korteweg-de Vries equation, Funct. Anal. Appl. 8 (1974) 236.

    MathSciNet  Article  MATH  Google Scholar 

  97. [97]

    L. Inzunza and M.S. Plyushchay, Hidden symmetries of rationally deformed superconformal mechanics, Phys. Rev. D 99 (2019) 025001 [arXiv:1809.08527] [INSPIRE].

    ADS  Google Scholar 

  98. [98]

    F. Correa, O. Lechtenfeld and M. Plyushchay, Nonlinear supersymmetry in the quantum Calogero model, JHEP 04 (2014) 151 [arXiv:1312.5749] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  99. [99]

    S. Wojciechowski, Superintegrability of the Calogero-Moser system, Phys. Lett. A 95 (1983) 279.

    ADS  MathSciNet  Article  Google Scholar 

  100. [100]

    V.B. Kuznetsov, Hidden symmetry of the quantum Calogero-Moser system, Phys. Lett. A 218 (1996) 212 [solv-int/9509001] [INSPIRE].

  101. [101]

    C. Gonera, A note on superintegrability of the quantum Calogero model, Phys. Lett. A 237 (1998) 365.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  102. [102]

    M.F. Rañada, Superintegrability of the Calogero-Moser system: Constants of motion, master symmetries, and time-dependent symmetries, J. Math. Phys. 40 (1999) 236.

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mikhail S. Plyushchay.

Additional information

ArXiv ePrint: 1806.08740

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guilarte, J.M., Plyushchay, M.S. Nonlinear symmetries of perfectly invisible PT-regularized conformal and superconformal mechanics systems. J. High Energ. Phys. 2019, 194 (2019). https://doi.org/10.1007/JHEP01(2019)194

Download citation

Keywords

  • Conformal and W Symmetry
  • Extended Supersymmetry
  • Integrable Hierarchies