J. Gomis and H. Ooguri, Nonrelativistic closed string theory, J. Math. Phys.
42 (2001) 3127 [hep-th/0009181] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
E. Bergshoeff, J. Gomis and Z. Yan, Nonrelativistic String Theory and T-duality, JHEP
11 (2018) 133 [arXiv:1806.06071] [INSPIRE].
ADS
Article
MATH
Google Scholar
C. Batlle, J. Gomis and D. Not, Extended Galilean symmetries of non-relativistic strings, JHEP
02 (2017) 049 [arXiv:1611.00026] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Gomis and P.K. Townsend, The Galilean Superstring, JHEP
02 (2017) 105 [arXiv:1612.02759] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C. Batlle, J. Gomis, L. Mezincescu and P.K. Townsend, Tachyons in the Galilean limit, JHEP
04 (2017) 120 [arXiv:1702.04792] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
T. Harmark, J. Hartong and N.A. Obers, Nonrelativistic strings and limits of the AdS/CFT correspondence, Phys. Rev.
D 96 (2017) 086019 [arXiv:1705.03535] [INSPIRE].
J. Klusoň, Remark About Non-Relativistic String in Newton-Cartan Background and Null Reduction, JHEP
05 (2018) 041 [arXiv:1803.07336] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
T. Harmark, J. Hartong, L. Menculini, N.A. Obers and Z. Yan, Strings with Non-Relativistic Conformal Symmetry and Limits of the AdS/CFT Correspondence, JHEP
11 (2018) 190 [arXiv:1810.05560] [INSPIRE].
ADS
Article
Google Scholar
A. Bagchi and R. Gopakumar, Galilean Conformal Algebras and AdS/CFT, JHEP
07 (2009) 037 [arXiv:0902.1385] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E.A. Bergshoeff, J. Gomis, J. Rosseel, C. Şimşek and Z. Yan, work in progress.
G. Papageorgiou and B.J. Schroers, A Chern-Simons approach to Galilean quantum gravity in 2+1 dimensions, JHEP
11 (2009) 009 [arXiv:0907.2880] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E.A. Bergshoeff and J. Rosseel, Three-Dimensional Extended Bargmann Supergravity, Phys. Rev. Lett.
116 (2016) 251601 [arXiv:1604.08042] [INSPIRE].
ADS
Article
Google Scholar
J. Hartong, Y. Lei and N.A. Obers, Nonrelativistic Chern-Simons theories and three-dimensional Hořava-Lifshitz gravity, Phys. Rev.
D 94 (2016) 065027 [arXiv:1604.08054] [INSPIRE].
E. Bergshoeff, J. Gomis, B. Rollier, J. Rosseel and T. ter Veldhuis, Carroll versus Galilei Gravity, JHEP
03 (2017) 165 [arXiv:1701.06156] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D. Van den Bleeken, Torsional Newton-Cartan gravity from the large c expansion of general relativity, Class. Quant. Grav.
34 (2017) 185004 [arXiv:1703.03459] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D. Hansen, J. Hartong and N.A. Obers, An Action Principle for Newtonian Gravity, arXiv:1807.04765 [INSPIRE].
J. Brugues, T. Curtright, J. Gomis and L. Mezincescu, Non-relativistic strings and branes as non-linear realizations of Galilei groups, Phys. Lett.
B 594 (2004) 227 [hep-th/0404175] [INSPIRE].
R. Andringa, E. Bergshoeff, J. Gomis and M. de Roo, ‘Stringy’ Newton-Cartan Gravity, Class. Quant. Grav.
29 (2012) 235020 [arXiv:1206.5176] [INSPIRE].
J.-M. Levy-Léblond, Galilei Group and Galilean Invariance, on Group Theory and its Applications, E.M. Loebl ed., Academic Press (2014) [DOI:https://doi.org/10.1016/B978-0-12-455152-7.50011-2].
C. Duval and P.A. Horvathy, The ‘Peierls substitution’ and the exotic Galilei group, Phys. Lett.
B 479 (2000) 284 [hep-th/0002233] [INSPIRE].
R. Jackiw and V.P. Nair, Anyon spin and the exotic central extension of the planar Galilei group, Phys. Lett.
B 480 (2000) 237 [hep-th/0003130] [INSPIRE].
M. Bañados, R. Troncoso and J. Zanelli, Higher dimensional Chern-Simons supergravity, Phys. Rev.
D 54 (1996) 2605 [gr-qc/9601003] [INSPIRE].
J.F. Plebanski, On the separation of Einsteinian substructures, J. Math. Phys.
18 (1977) 2511 [INSPIRE].
ADS
Article
MATH
Google Scholar
S. Gielen and D. Oriti, Classical general relativity as BF-Plebanski theory with linear constraints, Class. Quant. Grav.
27 (2010) 185017 [arXiv:1004.5371] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.M. Izquierdo, Lie algebra expansions and three-dimensional Galilean supergravity, talk given at the Spanish-Portuguese Relativist Meeting (EREP) 2018, Palencia, Spain, September (2018).
L. Mezincescu and P.K. Townsend, Anyons from Strings, Phys. Rev. Lett.
105 (2010) 191601 [arXiv:1008.2334] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Gußmann, D. Sarkar and N. Wintergerst, Bulk-boundary correspondence between charged, anyonic strings and vortices, JHEP
12 (2018) 093 [arXiv:1809.06871] [INSPIRE].
ADS
Article
Google Scholar
J. Brugues, J. Gomis and K. Kamimura, Newton-Hooke algebras, non-relativistic branes and generalized pp-wave metrics, Phys. Rev.
D 73 (2006) 085011 [hep-th/0603023] [INSPIRE].