Quantum information processing and composite quantum fields

Abstract

Some beautiful identities involving hook contents of Young diagrams have been found in the field of quantum information processing, along with a combinatorial proof. We here give a representation theoretic proof of these identities and a number of generalizations. Our proof is based on trace identities for elements belonging to a class of permutation centralizer algebras. These algebras have been found to underlie the combinatorics of composite gauge invariant operators in quantum field theory, with applications in the AdS/CFT correspondence. Based on these algebras, we discuss some analogies between quantum information processing tasks and the combinatorics of composite quantum fields and argue that this can be fruitful interface between quantum information and quantum field theory, with implications for AdS/CFT.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    M. Sedlák, A. Bisio and M. Ziman, Optimal probabilistic storage and retrieval of unitary channels, arXiv:1809.04552.

  2. [2]

    M. Sedlák and A. Bisio, On some new hook content identities, arXiv:1809.02008.

  3. [3]

    W. Fulton and J. Harris, Representation Theory: a first course, Springer (2004).

  4. [4]

    P. Mattioli and S. Ramgoolam, Permutation Centralizer Algebras and Multi-Matrix Invariants, Phys. Rev. D 93 (2016) 065040 [arXiv:1601.06086] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    Y. Kimura, Noncommutative Frobenius algebras and open-closed duality, arXiv:1701.08382 [INSPIRE].

  6. [6]

    Y. Kimura and S. Ramgoolam, Branes, anti-branes and brauer algebras in gauge-gravity duality, JHEP 11 (2007) 078 [arXiv:0709.2158] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    R. Bhattacharyya, S. Collins and R. de Mello Koch, Exact Multi-Matrix Correlators, JHEP 03 (2008) 044 [arXiv:0801.2061] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    R. Bhattacharyya, R. de Mello Koch and M. Stephanou, Exact Multi-Restricted Schur Polynomial Correlators, JHEP 06 (2008) 101 [arXiv:0805.3025] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP 04 (2009) 089 [arXiv:0806.1911] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    V. Balasubramanian, M.-x. Huang, T.S. Levi and A. Naqvi, Open strings from N = 4 superYang-Mills, JHEP 08 (2002) 037 [hep-th/0204196] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  13. [13]

    V. Balasubramanian, D. Berenstein, B. Feng and M.-x. Huang, D-branes in Yang-Mills theory and emergent gauge symmetry, JHEP 03 (2005) 006 [hep-th/0411205] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  14. [14]

    S. Ramgoolam, Permutations and the combinatorics of gauge invariants for general N, PoS(CORFU2015)107 (2016) [arXiv:1605.00843] [INSPIRE].

  15. [15]

    Y. Kimura and S. Ramgoolam, Enhanced symmetries of gauge theory and resolving the spectrum of local operators, Phys. Rev. D 78 (2008) 126003 [arXiv:0807.3696] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  16. [16]

    M. Lasalle, An explicit formula for characters of the symmetric group, arXiv:0707.2732.

  17. [17]

    M. Hayashi, A Group Theoretic Approach to Quantum Information, Springer (2017).

  18. [18]

    G. Chiribella, G.M. D’Ariano and P. Perinotti, Quantum Circuit Architecture, Phys. Rev. Lett. 101 (2008) 060401.

    ADS  Article  Google Scholar 

  19. [19]

    G. Gutoski and J. Watrous, Toward a general theory of quantum games, in Proceeding of the 39th Annual ACM Symposium on Theory of Computation, San Diego, California, U.S.A., June 11–13, 2007, pp. 565 [DOI:https://doi.org/10.1145/1250790.1250873].

  20. [20]

    G. Chiribella, G.M. D’Ariano and P. Perinotti, Theoretical framework for quantum networks, Phys. Rev. A 80 (2009) 022339.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    A. Bisio, G. Chiribella, G.M. D’Ariano and P. Perinotti, Quantum Networks: general theory and applications, Acta Phys. Slov. 61 (2011) 273 [arXiv:1601.04864].

    ADS  Google Scholar 

  22. [22]

    D. Bacon, I. Chuang and A. Harrow, Efficient Quantum Circuits for Schur and Clebsch-Gordan Transforms, Phys. Rev. Lett. 97 (2006) 170502 [quant-ph/0407082].

  23. [23]

    N. Beisert, The complete one loop dilatation operator of N = 4 superYang-Mills theory, Nucl. Phys. B 676 (2004) 3 [hep-th/0307015] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. [24]

    R. de Mello Koch, M. Dessein, D. Giataganas and C. Mathwin, Giant Graviton Oscillators, JHEP 10 (2011) 009 [arXiv:1108.2761] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    R. de Mello Koch and S. Ramgoolam, A double coset ansatz for integrability in AdS/CFT, JHEP 06 (2012) 083 [arXiv:1204.2153] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    V. Balasubramanian, B. Czech, K. Larjo and J. Simon, Integrability versus information loss: A Simple example, JHEP 11 (2006) 001 [hep-th/0602263] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    J. Simon, Correlations vs connectivity in R-charge, JHEP 10 (2018) 048 [arXiv:1805.11279] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  28. [28]

    D. Berenstein and A. Miller, Superposition induced topology changes in quantum gravity, JHEP 11 (2017) 121 [arXiv:1702.03011] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].

  31. [31]

    T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from Entanglement in Holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].

  33. [33]

    M. Hamermesh, Group theory and its application to physical problems, Dover (1962).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sanjaye Ramgoolam.

Additional information

ArXiv ePrint: 1809.05156

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramgoolam, S., Sedlák, M. Quantum information processing and composite quantum fields. J. High Energ. Phys. 2019, 170 (2019). https://doi.org/10.1007/JHEP01(2019)170

Download citation

Keywords

  • 1/N Expansion
  • AdS-CFT Correspondence