Skip to main content

Supergravity backgrounds of the η-deformed AdS2 × S2 × T6 and AdS5 × S5 superstrings

A preprint version of the article is available at arXiv.

Abstract

We construct supergravity backgrounds for the integrable η-deformations of the AdS2 × S2 × T6 and AdS5 × S5 superstring sigma models. The η-deformation is governed by an R-matrix that solves the non-split modified classical Yang-Baxter equation on the superisometry algebra of the model. Such R-matrices include those of Drinfel’d-Jimbo type, which are constructed from a Dynkin diagram and the associated Cartan-Weyl basis. Drinfel’d-Jimbo R-matrices associated with inequivalent bases will typically lead to different deformed backgrounds. For the two models under consideration we find that the unimodularity condition, implying that there is no Weyl anomaly, is satisfied if and only if all the simple roots are fermionic. For AdS2 × S2 × T6 we construct backgrounds corresponding to the three Dynkin diagrams. When all the simple roots are fermionic we find a supergravity background previously obtained by directly solving the supergravity equations. For AdS5 × S5 we construct a supergravity background corresponding to the Dynkin diagram with all fermionic simple roots.

References

  1. R.R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS 5 × S 5 background, Nucl. Phys. B 533 (1998) 109 [hep-th/9805028] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  2. N. Berkovits, M. Bershadsky, T. Hauer, S. Zhukov and B. Zwiebach, Superstring theory on AdS 2 × S 2 as a coset supermanifold, Nucl. Phys. B 567 (2000) 61 [hep-th/9907200] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  3. I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [INSPIRE].

    ADS  Google Scholar 

  4. M. Magro, The classical exchange algebra of AdS 5 × S 5, JHEP 01 (2009) 021 [arXiv:0810.4136] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  5. B. Vicedo, The classical R-matrix of AdS/CFT and its Lie dialgebra structure, Lett. Math. Phys. 95 (2011) 249 [arXiv:1003.1192] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS 5 × S 5 superstring action, Phys. Rev. Lett. 112 (2014) 051601 [arXiv:1309.5850] [INSPIRE].

    ADS  Article  Google Scholar 

  7. F. Delduc, M. Magro and B. Vicedo, Derivation of the action and symmetries of the q-deformed AdS 5 × S 5 superstring, JHEP 10 (2014) 132 [arXiv:1406.6286] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  8. C. Klimčík, Yang-Baxter σ-models and dS/AdS T duality, JHEP 12 (2002) 051 [hep-th/0210095] [INSPIRE].

  9. C. Klimčík, On integrability of the Yang-Baxter σ-model, J. Math. Phys. 50 (2009) 043508 [arXiv:0802.3518] [INSPIRE].

  10. F. Delduc, M. Magro and B. Vicedo, On classical q-deformations of integrable σ-models, JHEP 11 (2013) 192 [arXiv:1308.3581] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. G. Arutyunov, R. Borsato and S. Frolov, S-matrix for strings on η-deformed AdS 5 × S 5, JHEP 04 (2014) 002 [arXiv:1312.3542] [INSPIRE].

    ADS  Article  Google Scholar 

  12. G. Arutyunov, R. Borsato and S. Frolov, Puzzles of η-deformed AdS 5 × S 5, JHEP 12 (2015) 049 [arXiv:1507.04239] [INSPIRE].

    ADS  Google Scholar 

  13. G. Arutyunov, S. Frolov, B. Hoare, R. Roiban and A.A. Tseytlin, Scale invariance of the η-deformed AdS 5 × S 5 superstring, T-duality and modified type-II equations, Nucl. Phys. B 903 (2016) 262 [arXiv:1511.05795] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  14. L. Wulff and A.A. Tseytlin, κ-symmetry of superstring σ-model and generalized 10d supergravity equations, JHEP 06 (2016) 174 [arXiv:1605.04884] [INSPIRE].

  15. R. Borsato and L. Wulff, Target space supergeometry of η and λ-deformed strings, JHEP 10 (2016) 045 [arXiv:1608.03570] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. V.G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl. 32 (1985) 254 [Dokl. Akad. Nauk Ser. Fiz. 283 (1985) 1060] [INSPIRE].

  17. M. Jimbo, A q-difference analog of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985) 63 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. A.A. Belavin and V.G. Drinfel’d, Triangle equations and simple Lie algebras, Sov. Sci. Rev. C 4(1984) 93.

    MathSciNet  MATH  Google Scholar 

  19. F. Delduc, S. Lacroix, M. Magro and B. Vicedo, On q-deformed symmetries as Poisson-Lie symmetries and application to Yang-Baxter type models, J. Phys. A 49 (2016) 415402 [arXiv:1606.01712] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  20. T. Araujo, E. Ó Colgáin and H. Yavartanoo, Embedding the modified CYBE in supergravity, Eur. Phys. J. C 78 (2018) 854 [arXiv:1806.02602] [INSPIRE].

  21. P. Ševera and F. Valach, Courant algebroids, Poisson-Lie T-duality and type-II supergravities, arXiv:1810.07763 [INSPIRE].

  22. S. Demulder, F. Hassler and D.C. Thompson, Doubled aspects of generalised dualities and integrable deformations, arXiv:1810.11446 [INSPIRE].

  23. B. Hoare and S.J. van Tongeren, Non-split and split deformations of AdS 5, J. Phys. A 49 (2016) 484003 [arXiv:1605.03552] [INSPIRE].

    MATH  Google Scholar 

  24. T. Araujo, E. Ó Colgáin, J. Sakamoto, M.M. Sheikh-Jabbari and K. Yoshida, I in generalized supergravity, Eur. Phys. J. C 77 (2017) 739 [arXiv:1708.03163] [INSPIRE].

  25. B. Hoare, R. Roiban and A.A. Tseytlin, On deformations of AdS n × S n supercosets, JHEP 06 (2014) 002 [arXiv:1403.5517] [INSPIRE].

    ADS  Article  Google Scholar 

  26. O. Lunin, R. Roiban and A.A. Tseytlin, Supergravity backgrounds for deformations of AdS n × S n supercoset string models, Nucl. Phys. B 891 (2015) 106 [arXiv:1411.1066] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  27. G. Arutyunov and S. Frolov, Foundations of the AdS 5 × S 5 superstring. Part I, J. Phys. A 42 (2009) 254003 [arXiv:0901.4937] [INSPIRE].

  28. M.B. Green and J.H. Schwarz, Covariant description of superstrings, Phys. Lett. B 136 (1984) 367 [INSPIRE].

    ADS  Article  Google Scholar 

  29. M.T. Grisaru, P.S. Howe, L. Mezincescu, B. Nilsson and P.K. Townsend, N = 2 superstrings in a supergravity background, Phys. Lett. B 162 (1985) 116 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. A.A. Tseytlin, On dilaton dependence of type-II superstring action, Class. Quant. Grav. 13 (1996) L81 [hep-th/9601109] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. M. Cvetič, H. Lü, C.N. Pope and K.S. Stelle, T duality in the Green-Schwarz formalism and the massless/massive IIA duality map, Nucl. Phys. B 573 (2000) 149 [hep-th/9907202] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  32. L. Wulff, The type-II superstring to order θ 4, JHEP 07 (2013) 123 [arXiv:1304.6422] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  33. M.A. Semenov-Tian-Shansky, What is a classical r-matrix?, Funct. Anal. Appl. 17 (1983) 259 [Funkt. Anal. Pril. 17N4 (1983) 17] [INSPIRE].

  34. B. Hoare and F.K. Seibold, Poisson-Lie duals of the η-deformed AdS 2 × S 2 × T 6 superstring, JHEP 08 (2018) 107 [arXiv:1807.04608] [INSPIRE].

    ADS  Article  Google Scholar 

  35. D. Sorokin, A. Tseytlin, L. Wulff and K. Zarembo, Superstrings in AdS 2 × S 2 × T 6, J. Phys. A 44 (2011) 275401 [arXiv:1104.1793] [INSPIRE].

    ADS  MATH  Google Scholar 

  36. V.A. Fateev, E. Onofri and A.B. Zamolodchikov, The sausage model (integrable deformations of O(3) σ-model), Nucl. Phys. B 406 (1993) 521 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  37. D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super Yang-Mills, JHEP 04 (2002) 013[hep-th/0202021] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. M. Blau, J.M. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, Penrose limits and maximal supersymmetry, Class. Quant. Grav. 19 (2002) L87 [hep-th/0201081] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. G. Arutyunov and S.J. van Tongeren, AdS 5 × S 5 mirror model as a string σ-model, Phys. Rev. Lett. 113 (2014) 261605 [arXiv:1406.2304] [INSPIRE].

    ADS  Article  Google Scholar 

  40. A. Pachoł and S.J. van Tongeren, Quantum deformations of the flat space superstring, Phys. Rev. D 93 (2016) 026008 [arXiv:1510.02389] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  41. G. Arutyunov and S.J. van Tongeren, Double Wick rotating Green-Schwarz strings, JHEP 05 (2015) 027 [arXiv:1412.5137] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. A. Borowiec, H. Kyono, J. Lukierski, J.-I. Sakamoto and K. Yoshida, Yang-Baxter σ-models and Lax pairs arising from κ-Poincaré r-matrices, JHEP 04 (2016) 079 [arXiv:1510.03083] [INSPIRE].

    ADS  MATH  Google Scholar 

  43. B. Hoare and A.A. Tseytlin, On integrable deformations of superstring σ-models related to AdS n × S n supercosets, Nucl. Phys. B 897 (2015) 448 [arXiv:1504.07213] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  44. M. Grigoriev and A.A. Tseytlin, Pohlmeyer reduction of AdS 5 × S 5 superstring σ-model, Nucl. Phys. B 800 (2008) 450 [arXiv:0711.0155] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  45. D. Roychowdhury, On pp wave limit for η deformed superstrings, JHEP 05 (2018) 018 [arXiv:1801.07680] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. J.J. Fernández-Melgarejo, J.-I. Sakamoto, Y. Sakatani and K. Yoshida, Comments on Weyl invariance of string theories in generalized supergravity backgrounds, arXiv:1811.10600 [INSPIRE].

  47. J.-I. Sakamoto, Y. Sakatani and K. Yoshida, Weyl invariance for generalized supergravity backgrounds from the doubled formalism, PTEP 2017 (2017) 053B07 [arXiv:1703.09213] [INSPIRE].

  48. K. Zarembo, Strings on semisymmetric superspaces, JHEP 05 (2010) 002 [arXiv:1003.0465] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  49. L. Wulff, Superisometries and integrability of superstrings, JHEP 05 (2014) 115 [arXiv:1402.3122] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  50. A. Cagnazzo and K. Zarembo, B-field in AdS 3 /CFT 2 correspondence and integrability, JHEP 11 (2012) 133 [Erratum ibid. 04 (2013) 003] [arXiv:1209.4049] [INSPIRE].

  51. C. Klimčík, Integrability of the bi-Yang-Baxter σ-model, Lett. Math. Phys. 104 (2014) 1095 [arXiv:1402.2105] [INSPIRE].

  52. B. Hoare, Towards a two-parameter q-deformation of AdS 3 × S 3 × M 4 superstrings, Nucl. Phys. B 891 (2015) 259 [arXiv:1411.1266] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. F. Delduc, B. Hoare, T. Kameyama, S. Lacroix and M. Magro, Three-parameter integrable deformation of Z 4 permutation supercosets, arXiv:1811.00453 [INSPIRE].

  54. E. Álvarez, L. Álvarez-Gaumé and Y. Lozano, On non-Abelian duality, Nucl. Phys. B 424 (1994) 155 [hep-th/9403155] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  55. S. Elitzur, A. Giveon, E. Rabinovici, A. Schwimmer and G. Veneziano, Remarks on non-Abelian duality, Nucl. Phys. B 435 (1995) 147 [hep-th/9409011] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  56. R. Borsato and L. Wulff, Non-Abelian T-duality and Yang-Baxter deformations of Green-Schwarz strings, JHEP 08 (2018) 027 [arXiv:1806.04083] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  57. C. Klimčík and P. Ševera, Dual non-Abelian duality and the Drinfeld double, Phys. Lett. B 351 (1995) 455 [hep-th/9502122] [INSPIRE].

  58. C. Klimčík, Poisson-Lie T duality, Nucl. Phys. Proc. Suppl. 46 (1996) 116 [hep-th/9509095] [INSPIRE].

  59. C. Klimčík and P. Ševera, Poisson-Lie T duality and loop groups of Drinfeld doubles, Phys. Lett. B 372 (1996) 65 [hep-th/9512040] [INSPIRE].

  60. C. Klimčík and P. Ševera, Non-Abelian momentum winding exchange, Phys. Lett. B 383 (1996) 281 [hep-th/9605212] [INSPIRE].

  61. E. Tyurin and R. von Unge, Poisson-Lie T duality: the path integral derivation, Phys. Lett. B 382 (1996) 233 [hep-th/9512025] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  62. A. Bossard and N. Mohammedi, Poisson-Lie duality in the string effective action, Nucl. Phys. B 619 (2001) 128 [hep-th/0106211] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  63. N. Beisert and P. Koroteev, Quantum deformations of the one-dimensional Hubbard model, J. Phys. A 41 (2008) 255204 [arXiv:0802.0777] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  64. B. Hoare, T.J. Hollowood and J.L. Miramontes, q-deformation of the AdS 5 × S 5 superstring S-matrix and its relativistic limit, JHEP 03 (2012) 015 [arXiv:1112.4485] [INSPIRE].

  65. G. Arutyunov, M. de Leeuw and S.J. van Tongeren, The exact spectrum and mirror duality of the (AdS 5 × S 5 ) η superstring, Theor. Math. Phys. 182 (2015) 23 [Teor. Mat. Fiz. 182 (2014) 28] [arXiv:1403.6104] [INSPIRE].

  66. R. Klabbers and S.J. van Tongeren, Quantum spectral curve for the η-deformed AdS 5 × S 5 superstring, Nucl. Phys. B 925 (2017) 252 [arXiv:1708.02894] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona K. Seibold.

Additional information

ArXiv ePrint: 1811.07841

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoare, B., Seibold, F.K. Supergravity backgrounds of the η-deformed AdS2 × S2 × T6 and AdS5 × S5 superstrings. J. High Energ. Phys. 2019, 125 (2019). https://doi.org/10.1007/JHEP01(2019)125

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2019)125

Keywords

  • Integrable Field Theories
  • Sigma Models
  • Superstrings and Heterotic Strings