Skip to main content

Three-parameter integrable deformation of 4 permutation supercosets

A preprint version of the article is available at arXiv.

Abstract

A three-parameter integrable deformation of 4 permutation supercosets is constructed. These supercosets are of the form \( \widehat{F}/{F}_0 \) where F0 is the bosonic diagonal subgroup of the product supergroup \( \widehat{F}=\widehat{G}\times \widehat{G} \). They include the AdS3 × S3 and AdS3 × S3 × S3 supercosets. This deformation encompasses both the bi-Yang-Baxter deformation of the semi-symmetric space σ-model on 4 permutation supercosets and the mixed flux model. Truncating the action at the bosonic level, we show that one recovers the bi-Yang-Baxter deformation of the principal chiral model plus Wess-Zumino term.

References

  1. F. Delduc, B. Hoare, T. Kameyama and M. Magro, Combining the bi-Yang-Baxter deformation, the Wess-Zumino term and TsT transformations in one integrable σ-model, JHEP 10 (2017) 212 [arXiv:1707.08371] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. S.L. Lukyanov, The integrable harmonic map problem versus Ricci flow, Nucl. Phys. B 865 (2012) 308 [arXiv:1205.3201] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. C. Klimčík, Yang-Baxter σ-models and dS/AdS T duality, JHEP 12 (2002) 051 [hep-th/0210095] [INSPIRE].

  4. I.V. Cherednik, Relativistically invariant quasiclassical limits of integrable two-dimensional quantum models, Theor. Math. Phys. 47 (1981) 422 [INSPIRE].

    Article  Google Scholar 

  5. C. Klimčík, On integrability of the Yang-Baxter σ-model, J. Math. Phys. 50 (2009) 043508 [arXiv:0802.3518] [INSPIRE].

  6. F. Delduc, M. Magro and B. Vicedo, On classical q-deformations of integrable σ-models, JHEP 11 (2013) 192 [arXiv:1308.3581] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. C. Klimčík, Integrability of the bi-Yang-Baxter σ-model, Lett. Math. Phys. 104 (2014) 1095 [arXiv:1402.2105] [INSPIRE].

  8. F. Delduc, S. Lacroix, M. Magro and B. Vicedo, On the Hamiltonian integrability of the bi-Yang-Baxter σ-model, JHEP 03 (2016) 104 [arXiv:1512.02462] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  9. B. Hoare, R. Roiban and A.A. Tseytlin, On deformations of AdS n × S n supercosets, JHEP 06 (2014) 002 [arXiv:1403.5517] [INSPIRE].

    ADS  Article  Google Scholar 

  10. V.A. Fateev, The σ-model (dual) representation for a two-parameter family of integrable quantum field theories, Nucl. Phys. B 473 (1996) 509 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. S.P. Novikov, The Hamiltonian formalism and a many valued analog of Morse theory, Usp. Mat. Nauk 37N5 (1982) 3.

  12. E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. E. Witten, Nonabelian bosonization in two-dimensions, Commun. Math. Phys. 92 (1984) 455 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. I. Kawaguchi, D. Orlando and K. Yoshida, Yangian symmetry in deformed WZNW models on squashed spheres, Phys. Lett. B 701 (2011) 475 [arXiv:1104.0738] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. I. Kawaguchi and K. Yoshida, A deformation of quantum affine algebra in squashed Wess-Zumino-Novikov-Witten models, J. Math. Phys. 55 (2014) 062302 [arXiv:1311.4696] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. F. Delduc, M. Magro and B. Vicedo, Integrable double deformation of the principal chiral model, Nucl. Phys. B 891 (2015) 312 [arXiv:1410.8066] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. V.G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl. 32 (1985) 254 [INSPIRE].

    Google Scholar 

  18. M. Jimbo, A q difference analog of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985) 63 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. A.A. Belavin and V.G. Drinfel’d, Triangle equations and simple Lie algebras, Sov. Sci. Rev. C 4(1984) 93.

    MathSciNet  MATH  Google Scholar 

  20. J.H. Horne and G.T. Horowitz, Exact black string solutions in three-dimensions, Nucl. Phys. B 368 (1992) 444 [hep-th/9108001] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. A. Giveon and M. Roček, Generalized duality in curved string backgrounds, Nucl. Phys. B 380 (1992) 128 [hep-th/9112070] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. I. Kawaguchi, T. Matsumoto and K. Yoshida, Jordanian deformations of the AdS 5 × S 5 superstring, JHEP 04 (2014) 153 [arXiv:1401.4855] [INSPIRE].

    ADS  Article  Google Scholar 

  23. T. Matsumoto and K. Yoshida, Lunin-Maldacena backgrounds from the classical Yang-Baxter equation — Towards the gravity/CYBE correspondence, JHEP 06 (2014) 135 [arXiv:1404.1838] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. T. Matsumoto and K. Yoshida, Integrability of classical strings dual for noncommutative gauge theories, JHEP 06 (2014) 163 [arXiv:1404.3657] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. T. Matsumoto and K. Yoshida, Yang-Baxter σ-models based on the CYBE, Nucl. Phys. B 893 (2015) 287 [arXiv:1501.03665] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. T. Matsumoto and K. Yoshida, Schrödinger geometries arising from Yang-Baxter deformations, JHEP 04 (2015) 180 [arXiv:1502.00740] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  27. S.J. van Tongeren, On classical Yang-Baxter based deformations of the AdS 5 × S 5 superstring, JHEP 06 (2015) 048 [arXiv:1504.05516] [INSPIRE].

    Article  Google Scholar 

  28. B. Vicedo, Deformed integrable σ-models, classical R-matrices and classical exchange algebra on Drinfel’d doubles, J. Phys. A 48 (2015) 355203 [arXiv:1504.06303] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  29. D. Osten and S.J. van Tongeren, Abelian Yang-Baxter deformations and TsT transformations, Nucl. Phys. B 915 (2017) 184 [arXiv:1608.08504] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. R.R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS 5 × S 5 background, Nucl. Phys. B 533 (1998) 109 [hep-th/9805028] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  31. N. Berkovits et al., Superstring theory on AdS 2 × S 2 as a coset supermanifold, Nucl. Phys. B 567 (2000) 61 [hep-th/9907200] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  32. I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [INSPIRE].

    ADS  Google Scholar 

  33. M. Magro, The classical exchange algebra of AdS 5 × S 5, JHEP 01 (2009) 021 [arXiv:0810.4136] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  34. B. Vicedo, The classical R-matrix of AdS/CFT and its Lie dialgebra structure, Lett. Math. Phys. 95 (2011) 249 [arXiv:1003.1192] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. M.B. Green and J.H. Schwarz, Covariant description of superstrings, Phys. Lett. B 136 (1984) 367 [INSPIRE].

    ADS  Article  Google Scholar 

  36. M.T. Grisaru et al., N = 2 superstrings in a supergravity background, Phys. Lett. B 162 (1985) 116.

    ADS  MathSciNet  Article  Google Scholar 

  37. A.A. Tseytlin, On dilaton dependence of type-II superstring action, Class. Quant. Grav. 13 (1996) L81 [hep-th/9601109] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. M. Cvetič, H. Lü, C.N. Pope and K.S. Stelle, T duality in the Green-Schwarz formalism and the massless/massive IIA duality map, Nucl. Phys. B 573 (2000) 149 [hep-th/9907202] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  39. L. Wulff, The type-II superstring to order θ 4, JHEP 07 (2013) 123 [arXiv:1304.6422] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. K. Zarembo, Strings on semisymmetric superspaces, JHEP 05 (2010) 002 [arXiv:1003.0465] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  41. I. Pesando, The GS type IIB superstring action on AdS 3 × S 3 × T 4, JHEP 02 (1999) 007 [hep-th/9809145] [INSPIRE].

    ADS  Article  Google Scholar 

  42. J. Rahmfeld and A. Rajaraman, The GS string action on AdS 3 × S 3 with Ramond-Ramond charge, Phys. Rev. D 60 (1999) 064014 [hep-th/9809164] [INSPIRE].

    ADS  Google Scholar 

  43. J. Park and S.-J. Rey, Green-Schwarz superstring on AdS 3 × S 3, JHEP 01 (1999) 001 [hep-th/9812062] [INSPIRE].

    ADS  Google Scholar 

  44. B. Chen, Y.-L. He, P. Zhang and X.-C. Song, Flat currents of the Green-Schwarz superstrings in AdS 5 × S 1 and AdS 3 × S 3 backgrounds, Phys. Rev. D 71 (2005) 086007 [hep-th/0503089] [INSPIRE].

    ADS  Google Scholar 

  45. A. Babichenko, B. Stefanski, Jr. and K. Zarembo, Integrability and the AdS 3 /CFT 2 correspondence, JHEP 03 (2010) 058 [arXiv:0912.1723] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  46. A. Cagnazzo and K. Zarembo, B-field in AdS 3 /CFT 2 correspondence and integrability, JHEP 11 (2012) 133 [Erratum ibid. 04 (2013) 003] [arXiv:1209.4049] [INSPIRE].

  47. F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS 5 × S 5 superstring action, Phys. Rev. Lett. 112 (2014) 051601 [arXiv:1309.5850] [INSPIRE].

    ADS  Article  Google Scholar 

  48. F. Delduc, M. Magro and B. Vicedo, Derivation of the action and symmetries of the q-deformed AdS 5 × S 5 superstring, JHEP 10 (2014) 132 [arXiv:1406.6286] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  49. B. Hoare, Towards a two-parameter q-deformation of AdS 3 × S 3 × M 4 superstrings, Nucl. Phys. B 891 (2015) 259 [arXiv:1411.1266] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. B. Hoare and A.A. Tseytlin, On string theory on AdS 3 × S 3 × T 4 with mixed 3-form flux: tree-level S-matrix, Nucl. Phys. B 873 (2013) 682 [arXiv:1303.1037] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  51. A. Babichenko, A. Dekel and O. Ohlsson Sax, Finite-gap equations for strings on AdS 3 × S 3 × T 4 with mixed 3-form flux, JHEP 11 (2014) 122 [arXiv:1405.6087] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  52. L. Wulff, Superisometries and integrability of superstrings, JHEP 05 (2014) 115 [arXiv:1402.3122] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  53. L. Wulff, On integrability of strings on symmetric spaces, JHEP 09 (2015) 115 [arXiv:1505.03525] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  54. G. Arutyunov, R. Borsato and S. Frolov, Puzzles of η-deformed AdS 5 × S 5, JHEP 12 (2015) 049 [arXiv:1507.04239] [INSPIRE].

    ADS  Google Scholar 

  55. R. Borsato and L. Wulff, Target space supergeometry of η and λ-deformed strings, JHEP 10 (2016) 045 [arXiv:1608.03570] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  56. G. Arutyunov et al., Scale invariance of the η-deformed AdS 5 × S 5 superstring, T-duality and modified type-II equations, Nucl. Phys. B 903 (2016) 262 [arXiv:1511.05795] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. L. Wulff and A.A. Tseytlin, κ-symmetry of superstring σ-model and generalized 10d supergravity equations, JHEP 06 (2016) 174 [arXiv:1605.04884] [INSPIRE].

  58. B. Hoare and A.A. Tseytlin, Type IIB supergravity solution for the T-dual of the η-deformed AdS 5 × S 5 superstring, JHEP 10 (2015) 060 [arXiv:1508.01150] [INSPIRE].

    ADS  Article  Google Scholar 

  59. T. Araujo, E. Ó. Colgáin and H. Yavartanoo, Embedding the modified CYBE in Supergravity, Eur. Phys. J. C 78 (2018) 854 [arXiv:1806.02602] [INSPIRE].

    ADS  Article  Google Scholar 

  60. B. Hoare and F.K. Seibold, Poisson-Lie duals of the η-deformed AdS2 × S2 × T6 superstring, JHEP 08 (2018) 107 [arXiv:1807.04608] [INSPIRE].

    ADS  Article  Google Scholar 

  61. C. Klimčík and P. Ševera, Dual non-Abelian duality and the Drinfeld double, Phys. Lett. B 351 (1995) 455 [hep-th/9502122] [INSPIRE].

  62. C. Klimčík, Poisson-Lie T duality, Nucl. Phys. Proc. Suppl. 46 (1996) 116 [hep-th/9509095] [INSPIRE].

  63. C. Klimčík and P. Ševera, Poisson-Lie T duality and loop groups of Drinfeld doubles, Phys. Lett. B 372 (1996) 65 [hep-th/9512040] [INSPIRE].

  64. C. Klimčík, Yang-Baxter σ-model with WZNW term as-model, Phys. Lett. B 772 (2017) 725 [arXiv:1706.08912] [INSPIRE].

  65. S. Demulder, S. Driezen, A. Sevrin and D.C. Thompson, Classical and quantum aspects of Yang-Baxter Wess-Zumino models, JHEP 03 (2018) 041 [arXiv:1711.00084] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  66. P. Ševera and F. Valach, Courant algebroids, Poisson-Lie T-duality and type-II supergravities, arXiv:1810.07763 [INSPIRE].

  67. S. Demulder, F. Hassler and D.C. Thompson, Doubled aspects of generalised dualities and integrable deformations, arXiv:1810.11446 [INSPIRE].

  68. F. Delduc, S. Lacroix, M. Magro and B. Vicedo, On q-deformed symmetries as Poisson-Lie symmetries and application to Yang-Baxter type models, J. Phys. A 49 (2016) 415402 [arXiv:1606.01712] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  69. G. Arutyunov, R. Borsato and S. Frolov, S-matrix for strings on η-deformed AdS 5 × S 5, JHEP 04 (2014) 002 [arXiv:1312.3542] [INSPIRE].

    ADS  Article  Google Scholar 

  70. V. Regelskis, Yangian of AdS 3 /CFT 2 and its deformation, J. Geom. Phys. 106 (2016) 213 [arXiv:1503.03799] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  71. N. Beisert and P. Koroteev, Quantum deformations of the one-dimensional Hubbard model, J. Phys. A 41 (2008) 255204 [arXiv:0802.0777] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  72. R. Borsato, O. Ohlsson Sax and A. Sfondrini, A dynamic SU(1|1)2 S-matrix for AdS 3 /CFT 2, JHEP 04 (2013) 113 [arXiv:1211.5119] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  73. R. Borsato et al., The all-loop integrable spin-chain for strings on AdS 3 × S 3 × T 4 : the massive sector, JHEP 08 (2013) 043 [arXiv:1303.5995] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  74. R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefanski, The complete AdS 3 × S 3 × T 4 worldsheet S matrix, JHEP 10 (2014) 066 [arXiv:1406.0453] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  75. S. Lacroix, Integrable models with twist function and affine Gaudin models, Ph.D. thesis, Lyon, Ecole Normale Superieure, France (2018), arXiv:1809.06811 [INSPIRE].

  76. B. Vicedo, On integrable field theories as dihedral affine Gaudin models, arXiv:1701.04856 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Delduc.

Additional information

ArXiv ePrint: 1811.00453

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Delduc, F., Hoare, B., Kameyama, T. et al. Three-parameter integrable deformation of 4 permutation supercosets. J. High Energ. Phys. 2019, 109 (2019). https://doi.org/10.1007/JHEP01(2019)109

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2019)109

Keywords

  • Integrable Field Theories
  • Sigma Models