Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Dark matter bound states via emission of scalar mediators

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 08 January 2019
  • Volume 2019, article number 70, (2019)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Dark matter bound states via emission of scalar mediators
Download PDF
  • Ruben Oncala1,2 &
  • Kalliopi Petraki1,2 
  • 350 Accesses

  • 24 Citations

  • 3 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

If dark matter (DM) couples to a force carrier that is much lighter than itself, then it may form bound states in the early universe and inside haloes. While bound-state formation via vector emission is known to be efficient and have a variety of phenomenological implications, the capture via scalar emission typically requires larger couplings and is relevant to more limited parameter space, due to cancellations in the radiative amplitude. However, this result takes into account only the trilinear DM-DM-mediator coupling. Theories with scalar mediators include also a scalar potential, whose couplings may participate in the radiative transitions. We compute the contributions of these couplings to the radiative capture, and determine the parameter space in which they are important.

Article PDF

Download to read the full article text

Similar content being viewed by others

Dark matter bound state formation via emission of a charged scalar

Article Open access 05 February 2020

Dark-matter bound states from Feynman diagrams

Article Open access 18 June 2015

Di-photon excess illuminates dark matter

Article Open access 22 March 2016
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S. Tulin and H.-B. Yu, Dark Matter Self-interactions and Small Scale Structure, Phys. Rept. 730 (2018) 1 [arXiv:1705.02358] [INSPIRE].

  2. A. Sommerfeld, Über die Beugung und Bremsung der Elektronen, Annalen Phys. 403 (1931) 257.

    Article  ADS  MATH  Google Scholar 

  3. A.D. Sakharov, Interaction of an Electron and Positron in Pair Production, Zh. Eksp. Teor. Fiz. 18 (1948) 631 [INSPIRE].

    Google Scholar 

  4. J. Harz and K. Petraki, Higgs Enhancement for the Dark Matter Relic Density, Phys. Rev. D 97 (2018) 075041 [arXiv:1711.03552] [INSPIRE].

  5. B. von Harling and K. Petraki, Bound-state formation for thermal relic dark matter and unitarity, JCAP 12 (2014) 033 [arXiv:1407.7874] [INSPIRE].

    Article  Google Scholar 

  6. M. Pospelov and A. Ritz, Astrophysical Signatures of Secluded Dark Matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].

  7. H. An, M.B. Wise and Y. Zhang, Effects of Bound States on Dark Matter Annihilation, Phys. Rev. D 93 (2016) 115020 [arXiv:1604.01776] [INSPIRE].

    ADS  Google Scholar 

  8. P. Asadi, M. Baumgart, P.J. Fitzpatrick, E. Krupczak and T.R. Slatyer, Capture and Decay of Electroweak WIMPonium, JCAP 02 (2017) 005 [arXiv:1610.07617] [INSPIRE].

    Article  ADS  Google Scholar 

  9. K. Petraki, M. Postma and J. de Vries, Radiative bound-state-formation cross-sections for dark matter interacting via a Yukawa potential, JHEP 04 (2017) 077 [arXiv:1611.01394] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  10. M. Cirelli, P. Panci, K. Petraki, F. Sala and M. Taoso, Dark Matter’s secret liaisons: phenomenology of a dark U(1) sector with bound states, JCAP 05 (2017) 036 [arXiv:1612.07295] [INSPIRE].

    Article  ADS  Google Scholar 

  11. C. Kouvaris, K. Langæble and N.G. Nielsen, The Spectrum of Darkonium in the Sun, JCAP 10 (2016) 012 [arXiv:1607.00374] [INSPIRE].

  12. I. Baldes and K. Petraki, Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds, JCAP 09 (2017) 028 [arXiv:1703.00478] [INSPIRE].

    ADS  Google Scholar 

  13. I. Baldes, M. Cirelli, P. Panci, K. Petraki, F. Sala and M. Taoso, Asymmetric dark matter: residual annihilations and self-interactions, SciPost Phys. 4 (2018) 041 [arXiv:1712.07489] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J.D. March-Russell and S.M. West, WIMPonium and Boost Factors for Indirect Dark Matter Detection, Phys. Lett. B 676 (2009) 133 [arXiv:0812.0559] [INSPIRE].

    Article  ADS  Google Scholar 

  15. H. An, M.B. Wise and Y. Zhang, Strong CMB Constraint On P-Wave Annihilating Dark Matter, Phys. Lett. B 773 (2017) 121 [arXiv:1606.02305] [INSPIRE].

    Article  ADS  Google Scholar 

  16. K. Petraki, L. Pearce and A. Kusenko, Self-interacting asymmetric dark matter coupled to a light massive dark photon, JCAP 07 (2014) 039 [arXiv:1403.1077] [INSPIRE].

    Article  ADS  Google Scholar 

  17. L. Pearce, K. Petraki and A. Kusenko, Signals from dark atom formation in halos, Phys. Rev. D 91 (2015) 083532 [arXiv:1502.01755] [INSPIRE].

    ADS  Google Scholar 

  18. J.M. Cline, Y. Farzan, Z. Liu, G.D. Moore and W. Xue, 3.5 keV x rays as the “21 cm line” of dark atoms and a link to light sterile neutrinos, Phys. Rev. D 89 (2014) 121302 [arXiv:1404.3729] [INSPIRE].

  19. L. Pearce and A. Kusenko, Indirect Detection of Self-Interacting Asymmetric Dark Matter, Phys. Rev. D 87 (2013) 123531 [arXiv:1303.7294] [INSPIRE].

    ADS  Google Scholar 

  20. W. Detmold, M. McCullough and A. Pochinsky, Dark Nuclei I: Cosmology and Indirect Detection, Phys. Rev. D 90 (2014) 115013 [arXiv:1406.2276] [INSPIRE].

    ADS  Google Scholar 

  21. R. Laha and E. Braaten, Direct detection of dark matter in universal bound states, Phys. Rev. D 89 (2014) 103510 [arXiv:1311.6386] [INSPIRE].

    ADS  Google Scholar 

  22. A. Butcher, R. Kirk, J. Monroe and S.M. West, Can Tonne-Scale Direct Detection Experiments Discover Nuclear Dark Matter?, JCAP 10 (2017) 035 [arXiv:1610.01840] [INSPIRE].

    Article  ADS  Google Scholar 

  23. G. Krnjaic and K. Sigurdson, Big Bang Darkleosynthesis, Phys. Lett. B 751 (2015) 464 [arXiv:1406.1171] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M.B. Wise and Y. Zhang, Stable Bound States of Asymmetric Dark Matter, Phys. Rev. D 90 (2014) 055030 [Erratum ibid. D 91 (2015) 039907] [arXiv:1407.4121] [INSPIRE].

  25. M.B. Wise and Y. Zhang, Yukawa Bound States of a Large Number of Fermions, JHEP 02 (2015) 023 [Erratum ibid. 10 (2015) 165] [arXiv:1411.1772] [INSPIRE].

  26. S.R. Coleman, Q Balls, Nucl. Phys. B 262 (1985) 263 [Erratum ibid. B 269 (1986) 744] [INSPIRE].

  27. A. Kusenko, Small Q balls, Phys. Lett. B 404 (1997) 285 [hep-th/9704073] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Kusenko, Solitons in the supersymmetric extensions of the standard model, Phys. Lett. B 405 (1997) 108 [hep-ph/9704273] [INSPIRE].

  29. A. Kusenko and M.E. Shaposhnikov, Supersymmetric Q balls as dark matter, Phys. Lett. B 418 (1998) 46 [hep-ph/9709492] [INSPIRE].

  30. W. Shepherd, T.M.P. Tait and G. Zaharijas, Bound states of weakly interacting dark matter, Phys. Rev. D 79 (2009) 055022 [arXiv:0901.2125] [INSPIRE].

    ADS  Google Scholar 

  31. K. Petraki, M. Postma and M. Wiechers, Dark-matter bound states from Feynman diagrams, JHEP 06 (2015) 128 [arXiv:1505.00109] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. S. Kim and M. Laine, On thermal corrections to near-threshold annihilation, JCAP 01 (2017) 013 [arXiv:1609.00474] [INSPIRE].

  33. S. Kim and M. Laine, Rapid thermal co-annihilation through bound states in QCD, JHEP 07 (2016) 143 [arXiv:1602.08105] [INSPIRE].

  34. J. Harz and K. Petraki, Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter, JHEP 07 (2018) 096 [arXiv:1805.01200] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Geller, S. Iwamoto, G. Lee, Y. Shadmi and O. Telem, Dark quarkonium formation in the early universe, JHEP 06 (2018) 135 [arXiv:1802.07720] [INSPIRE].

    Article  ADS  Google Scholar 

  36. S. Biondini and M. Laine, Thermal dark matter co-annihilating with a strongly interacting scalar, JHEP 04 (2018) 072 [arXiv:1801.05821] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  37. S. Biondini and M. Laine, Re-derived overclosure bound for the inert doublet model, JHEP 08 (2017) 047 [arXiv:1706.01894] [INSPIRE].

    Article  ADS  Google Scholar 

  38. D.E. Kaplan, G.Z. Krnjaic, K.R. Rehermann and C.M. Wells, Atomic Dark Matter, JCAP 05 (2010) 021 [arXiv:0909.0753] [INSPIRE].

    Article  ADS  Google Scholar 

  39. F.-Y. Cyr-Racine and K. Sigurdson, Cosmology of atomic dark matter, Phys. Rev. D 87 (2013) 103515 [arXiv:1209.5752] [INSPIRE].

  40. S.J. Lonsdale and R.R. Volkas, Grand unified hidden-sector dark matter, Phys. Rev. D 90 (2014) 083501 [Erratum ibid. D 91 (2015) 129906] [arXiv:1407.4192] [INSPIRE].

  41. K.K. Boddy, J.L. Feng, M. Kaplinghat and T.M.P. Tait, Self-Interacting Dark Matter from a Non-Abelian Hidden Sector, Phys. Rev. D 89 (2014) 115017 [arXiv:1402.3629] [INSPIRE].

    ADS  Google Scholar 

  42. G.D. Kribs and E.T. Neil, Review of strongly-coupled composite dark matter models and lattice simulations, Int. J. Mod. Phys. A 31 (2016) 1643004 [arXiv:1604.04627] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. S.J. Lonsdale, M. Schroor and R.R. Volkas, Asymmetric Dark Matter and the hadronic spectra of hidden QCD, Phys. Rev. D 96 (2017) 055027 [arXiv:1704.05213] [INSPIRE].

    ADS  Google Scholar 

  44. S.J. Lonsdale and R.R. Volkas, Comprehensive asymmetric dark matter model, Phys. Rev. D 97 (2018) 103510 [arXiv:1801.05561] [INSPIRE].

  45. M.I. Gresham, H.K. Lou and K.M. Zurek, Early Universe synthesis of asymmetric dark matter nuggets, Phys. Rev. D 97 (2018) 036003 [arXiv:1707.02316] [INSPIRE].

    ADS  Google Scholar 

  46. E. Braaten, D. Kang and R. Laha, Production of dark-matter bound states in the early universe by three-body recombination, JHEP 11 (2018) 084 [arXiv:1806.00609] [INSPIRE].

    Article  ADS  Google Scholar 

  47. C. Itzykson and J. Zuber, Quantum field theory, Dover Publications, (1980).

  48. A. Pineda and J. Soto, Effective field theory for ultrasoft momenta in NRQCD and NRQED, Nucl. Phys. Proc. Suppl. 64 (1998) 428 [hep-ph/9707481] [INSPIRE].

  49. N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: An effective theory for heavy quarkonium, Nucl. Phys. B 566 (2000) 275 [hep-ph/9907240] [INSPIRE].

  50. M. Beneke, Perturbative heavy quark - anti-quark systems, hep-ph/9911490 [INSPIRE].

  51. A.V. Manohar and I.W. Stewart, Renormalization group analysis of the QCD quark potential to order v 2, Phys. Rev. D 62 (2000) 014033 [hep-ph/9912226] [INSPIRE].

  52. A.V. Manohar and I.W. Stewart, Running of the heavy quark production current and 1/v potential in QCD, Phys. Rev. D 63 (2001) 054004 [hep-ph/0003107] [INSPIRE].

  53. A. Pineda, Renormalization group improvement of the NRQCD Lagrangian and heavy quarkonium spectrum, Phys. Rev. D 65 (2002) 074007 [hep-ph/0109117] [INSPIRE].

  54. N. Brambilla, A. Pineda, J. Soto and A. Vairo, Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77 (2005) 1423 [hep-ph/0410047] [INSPIRE].

  55. A. Pineda, Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case, Phys. Rev. D 84 (2011) 014012 [arXiv:1101.3269] [INSPIRE].

    ADS  Google Scholar 

  56. A.H. Hoang and M. Stahlhofen, Ultrasoft NLL Running of the Nonrelativistic O(v) QCD Quark Potential, JHEP 06 (2011) 088 [arXiv:1102.0269] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  57. E. Braaten, E. Johnson and H. Zhang, Zero-range effective field theory for resonant wino dark matter. Part II. Coulomb resummation, JHEP 02 (2018) 150 [arXiv:1708.07155] [INSPIRE].

  58. E. Braaten, E. Johnson and H. Zhang, Zero-range effective field theory for resonant wino dark matter. Part I. Framework, JHEP 11 (2017) 108 [arXiv:1706.02253] [INSPIRE].

  59. E. Braaten, E. Johnson and H. Zhang, Zero-range effective field theory for resonant wino dark matter. Part III. Annihilation effects, JHEP 05 (2018) 062 [arXiv:1712.07142] [INSPIRE].

  60. K.M. Belotsky, E.A. Esipova and A.A. Kirillov, On the classical description of the recombination of dark matter particles with a Coulomb-like interaction, Phys. Lett. B 761 (2016)81 [arXiv:1506.03094] [INSPIRE].

  61. T. Bringmann, F. Kahlhoefer, K. Schmidt-Hoberg and P. Walia, Strong constraints on self-interacting dark matter with light mediators, Phys. Rev. Lett. 118 (2017) 141802 [arXiv:1612.00845] [INSPIRE].

    Article  ADS  Google Scholar 

  62. F. Kahlhoefer, K. Schmidt-Hoberg and S. Wild, Dark matter self-interactions from a general spin-0 mediator, JCAP 08 (2017) 003 [arXiv:1704.02149] [INSPIRE].

    Article  ADS  Google Scholar 

  63. N.F. Bell, Y. Cai, J.B. Dent, R.K. Leane and T.J. Weiler, Enhancing Dark Matter Annihilation Rates with Dark Bremsstrahlung, Phys. Rev. D 96 (2017) 023011 [arXiv:1705.01105] [INSPIRE].

    ADS  Google Scholar 

  64. T. Binder, M. Gustafsson, A. Kamada, S.M.R. Sandner and M. Wiesner, Reannihilation of self-interacting dark matter, Phys. Rev. D 97 (2018) 123004 [arXiv:1712.01246] [INSPIRE].

    ADS  Google Scholar 

  65. K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].

  66. A. Kusenko, Phase transitions precipitated by solitosynthesis, Phys. Lett. B 406 (1997) 26 [hep-ph/9705361] [INSPIRE].

  67. M. Postma, Solitosynthesis of Q balls, Phys. Rev. D 65 (2002) 085035 [hep-ph/0110199] [INSPIRE].

  68. L. Pearce, Solitosynthesis induced phase transitions, Phys. Rev. D 85 (2012) 125022 [arXiv:1202.0873] [INSPIRE].

    ADS  Google Scholar 

  69. M.E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory, Westview Press, (1995).

  70. L. Hulthén, Über die eigenlosunger der Schrödinger-gleichung des deuterons, Ark. Mat. Astron. Fys. 28 A (1942) 1.

  71. L. Hulthén, On the Virtual State of the Deuteron, Ark. Mat. Astron. Fys. 29 B (1943) 1.

  72. A.I. Akhiezer and N.P. Merenkov, The theory of lepton bound-state production, J. Phys. B 29 (1996) 2135.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Nikhef, Science Park 105, 1098 XG, Amsterdam, The Netherlands

    Ruben Oncala & Kalliopi Petraki

  2. Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589 CNRS & Sorbonne Université, 4 Place Jussieu, F-75252, Paris, France

    Ruben Oncala & Kalliopi Petraki

Authors
  1. Ruben Oncala
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Kalliopi Petraki
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ruben Oncala.

Additional information

ArXiv ePrint: 1808.04854

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oncala, R., Petraki, K. Dark matter bound states via emission of scalar mediators. J. High Energ. Phys. 2019, 70 (2019). https://doi.org/10.1007/JHEP01(2019)070

Download citation

  • Received: 28 September 2018

  • Accepted: 17 December 2018

  • Published: 08 January 2019

  • DOI: https://doi.org/10.1007/JHEP01(2019)070

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Nonperturbative Effects
  • Cosmology of Theories beyond the SM
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature