Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Go to cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
Large N phase transition in \( T\overline{T} \) -deformed 2d Yang-Mills theory on the sphere
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

The phase diagram of T T ¯ $$ T\overline{T} $$ -deformed Yang-Mills theory on the sphere

14 November 2022

Luca Griguolo, Rodolfo Panerai, … Domenico Seminara

T T ¯ $$ T\overline{T} $$ -deformed 2D Yang-Mills at large N: collective field theory and phase transitions

15 March 2021

A. Gorsky, D. Pavshinkin & A. Tyutyakina

Exact T T ¯ $$ T\overline{T} $$ deformation of two-dimensional Yang-Mills theory on the sphere

20 October 2022

Luca Griguolo, Rodolfo Panerai, … Domenico Seminara

P T $$ \mathcal{P}\mathcal{T} $$ deformation of Calogero-Sutherland models

27 May 2019

Francisco Correa & Olaf Lechtenfeld

T T ¯ $$ T\overline{T} $$ -deformation of q-Yang-Mills theory

17 November 2020

Leonardo Santilli, Richard J. Szabo & Miguel Tierz

The T T ¯ $$ T\overline{T} $$ deformation at large central charge

28 May 2018

Ofer Aharony & Talya Vaknin

The two-sphere partition function from timelike Liouville theory at three-loop order

10 May 2022

Beatrix Mühlmann

The two-sphere partition function in two-dimensional quantum gravity at fixed area

28 September 2021

Beatrix Mühlmann

Sphere partition functions & cut-off AdS

20 May 2019

Pawel Caputa, Shouvik Datta & Vasudev Shyam

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 07 January 2019

Large N phase transition in \( T\overline{T} \) -deformed 2d Yang-Mills theory on the sphere

  • Leonardo Santilli1 &
  • Miguel Tierz1 

Journal of High Energy Physics volume 2019, Article number: 54 (2019) Cite this article

  • 347 Accesses

  • 21 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We study the partition function of a \( T\overline{T} \) -deformed version of Yang-Mills theory on the two-sphere. We show that the Douglas-Kazakov phase transition persists for a range of values of the deformation parameter, and that the critical area is lowered. The transition is of third order and also induced by instantons, whose contributions we characterize.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. A.B. Zamolodchikov, Expectation value of composite field \( T\overline{T} \) in two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].

  2. F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].

  3. A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \) -deformed 2D quantum field theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].

  4. S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS 2 holography and \( T\overline{T} \), JHEP 09 (2017) 136 [arXiv:1706.06604] [INSPIRE].

  5. S. Dubovsky, V. Gorbenko and G. Hernández-Chifflet, \( T\overline{T} \) partition function from topological gravity, JHEP 09 (2018) 158 [arXiv:1805.07386] [INSPIRE].

  6. A. Giveon, N. Itzhaki and D. Kutasov, \( T\overline{T} \) and LST, JHEP 07 (2017) 122 [arXiv:1701.05576] [INSPIRE].

  7. A. Giveon, N. Itzhaki and D. Kutasov, A solvable irrelevant deformation of AdS 3 /CFT 2, JHEP 12 (2017) 155 [arXiv:1707.05800] [INSPIRE].

  8. S. Datta and Y. Jiang, \( T\overline{T} \) deformed partition functions, JHEP 08 (2018) 106 [arXiv:1806.07426] [INSPIRE].

  9. O. Aharony, S. Datta, A. Giveon, Y. Jiang and D. Kutasov, Modular invariance and uniqueness of \( T\overline{T} \) deformed CFT, arXiv:1808.02492 [INSPIRE].

  10. J. Cardy, The \( T\overline{T} \) deformation of quantum field theory as random geometry, JHEP 10 (2018) 186 [arXiv:1801.06895] [INSPIRE].

  11. R. Conti, S. Negro and R. Tateo, The \( T\overline{T} \) perturbation and its geometric interpretation, arXiv:1809.09593 [INSPIRE].

  12. J. Cardy, \( T\overline{T} \) deformations of non-Lorentz invariant field theories, arXiv:1809.07849 [INSPIRE].

  13. R. Conti, L. Iannella, S. Negro and R. Tateo, Generalised Born-Infeld models, Lax operators and the \( T\overline{T} \) perturbation, JHEP 11 (2018) 007 [arXiv:1806.11515] [INSPIRE].

  14. S. Cordes, G.W. Moore and S. Ramgoolam, Lectures on 2D Yang-Mills theory, equivariant cohomology and topological field theories, Nucl. Phys. Proc. Suppl. 41 (1995) 184 [hep-th/9411210] [INSPIRE].

  15. M.R. Douglas and V.A. Kazakov, Large N phase transition in continuum QCD in two-dimensions, Phys. Lett. B 319 (1993) 219 [hep-th/9305047] [INSPIRE].

  16. D.J. Gross and A. Matytsin, Instanton induced large N phase transitions in two-dimensional and four-dimensional QCD, Nucl. Phys. B 429 (1994) 50 [hep-th/9404004] [INSPIRE].

  17. A.A. Migdal, Recursion equations in gauge theories, Sov. Phys. JETP 42 (1975) 413 [Zh. Eksp. Teor. Fiz. 69 (1975) 810] [INSPIRE].

  18. P. Menotti and E. Onofri, The action of SU(N) lattice gauge theory in terms of the heat kernel on the group manifold, Nucl. Phys. B 190 (1981) 288 [INSPIRE].

  19. B.E. Rusakov, Loop averages and partition functions in U(N) gauge theory on two-dimensional manifolds, Mod. Phys. Lett. A 5 (1990) 693 [INSPIRE].

  20. M.R. Douglas, Conformal field theory techniques in large N Yang-Mills theory, in NATO Advanced Research Workshop on New Developments in String Theory, Conformal Models and Topological Field Theory, Cargese, France, 12-21 May 1993 [hep-th/9311130] [INSPIRE].

  21. J.A. Minahan and A.P. Polychronakos, Classical solutions for two-dimensional QCD on the sphere, Nucl. Phys. B 422 (1994) 172 [hep-th/9309119] [INSPIRE].

  22. D.J. Gross and E. Witten, Possible third order phase transition in the large N lattice gauge theory, Phys. Rev. D 21 (1980) 446 [INSPIRE].

  23. S.R. Wadia, N = ∞ phase transition in a class of exactly soluble model lattice gauge theories, Phys. Lett. B 93 (1980) 403 [INSPIRE].

  24. S.R. Wadia, A study of U(N) lattice gauge theory in 2-dimensions, arXiv:1212.2906 [INSPIRE].

  25. M. Caselle, A. D’Adda, L. Magnea and S. Panzeri, Two-dimensional QCD on the sphere and on the cylinder, in Proceedings, Summer School in High-energy physics and cosmology, Trieste, Italy, 15 June-31 July 1992, pg. 0245 [hep-th/9309107] [INSPIRE].

  26. D.J. Gross, Two-dimensional QCD as a string theory, Nucl. Phys. B 400 (1993) 161 [hep-th/9212149] [INSPIRE].

  27. D.J. Gross and W. Taylor, Two-dimensional QCD is a string theory, Nucl. Phys. B 400 (1993) 181 [hep-th/9301068] [INSPIRE].

  28. W. Donnelly and G. Wong, Entanglement branes in a two-dimensional string theory, JHEP 09 (2017) 097 [arXiv:1610.01719] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. A.C. Pipkin, A course on integral equations, Texts Appl. Math. 9, Springer, New York, U.S.A. (1991).

  30. N.I. Muskhelishvili, Singular integral equations, Noordhoff, The Netherlands (1977).

  31. D. Jafferis and J. Marsano, A DK phase transition in q-deformed Yang-Mills on S 2 and topological strings, hep-th/0509004 [INSPIRE].

  32. R.J. Szabo and M. Tierz, q-deformations of two-dimensional Yang-Mills theory: classification, categorification and refinement, Nucl. Phys. B 876 (2013) 234 [arXiv:1305.1580] [INSPIRE].

  33. E. Witten, On quantum gauge theories in two-dimensions, Commun. Math. Phys. 141 (1991) 153 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303 [hep-th/9204083] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. M. Blau and G. Thompson, Derivation of the Verlinde formula from Chern-Simons theory and the G/G model, Nucl. Phys. B 408 (1993) 345 [hep-th/9305010] [INSPIRE].

  36. M. Blau and G. Thompson, Lectures on 2D gauge theories: topological aspects and path integral techniques, in Proceedings, Summer School in High-energy physics and cosmology, Trieste, Italy, 14 June-30 July 1993, pg. 0175 [hep-th/9310144] [INSPIRE].

  37. N. Caporaso, M. Cirafici, L. Griguolo, S. Pasquetti, D. Seminara and R.J. Szabo, Topological strings and large N phase transitions. I. Nonchiral expansion of q-deformed Yang-Mills theory, JHEP 01 (2006) 035 [hep-th/0509041] [INSPIRE].

  38. S. Giombi and V. Pestun, Correlators of local operators and 1/8 BPS Wilson loops on S 2 from 2d YM and matrix models, JHEP 10 (2010) 033 [arXiv:0906.1572] [INSPIRE].

  39. S. Giombi and V. Pestun, The 1/2 BPS ’t Hooft loops in N = 4 SYM as instantons in 2d Yang-Mills, J. Phys. A 46 (2013) 095402 [arXiv:0909.4272] [INSPIRE].

  40. A. Bassetto and L. Griguolo, Two-dimensional QCD, instanton contributions and the perturbative Wu-Mandelstam-Leibbrandt prescription, Phys. Lett. B 443 (1998) 325 [hep-th/9806037] [INSPIRE].

  41. N. Drukker and D.J. Gross, An exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].

  42. B. Durhuus and P. Olesen, The spectral density for two-dimensional continuum QCD, Nucl. Phys. B 184 (1981) 461 [INSPIRE].

  43. J.-P. Blaizot and M.A. Nowak, Large N c confinement and turbulence, Phys. Rev. Lett. 101 (2008) 102001 [arXiv:0801.1859] [INSPIRE].

  44. H. Neuberger, Complex Burgers’ equation in 2D SU(N) YM, Phys. Lett. B 670 (2008) 235 [arXiv:0809.1238] [INSPIRE].

  45. M.J. Crescimanno and W. Taylor, Large N phases of chiral QCD in two-dimensions, Nucl. Phys. B 437 (1995) 3 [hep-th/9408115] [INSPIRE].

  46. M.R. Douglas, K. Li and M. Staudacher, Generalized two-dimensional QCD, Nucl. Phys. B 420 (1994) 118 [hep-th/9401062] [INSPIRE].

  47. O. Ganor, J. Sonnenschein and S. Yankielowicz, The string theory approach to generalized 2D Yang-Mills theory, Nucl. Phys. B 434 (1995) 139 [hep-th/9407114] [INSPIRE].

  48. A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The 4d superconformal index from q-deformed 2d Yang-Mills, Phys. Rev. Lett. 106 (2011) 241602 [arXiv:1104.3850] [INSPIRE].

  49. M. Aganagic, H. Ooguri, N. Saulina and C. Vafa, Black holes, q-deformed 2d Yang-Mills and non-perturbative topological strings, Nucl. Phys. B 715 (2005) 304 [hep-th/0411280] [INSPIRE].

  50. C. Beasley and E. Witten, Non-Abelian localization for Chern-Simons theory, J. Diff. Geom. 70 (2005) 183 [hep-th/0503126] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  51. J. Kallen, Cohomological localization of Chern-Simons theory, JHEP 08 (2011) 008 [arXiv:1104.5353] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. X. Arsiwalla, R. Boels, M. Mariño and A. Sinkovics, Phase transitions in q-deformed 2D Yang-Mills theory and topological strings, Phys. Rev. D 73 (2006) 026005 [hep-th/0509002] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Departamento de Matemática, Grupo de Física Matemática, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C6, 1749-016, Lisboa, Portugal

    Leonardo Santilli & Miguel Tierz

Authors
  1. Leonardo Santilli
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Miguel Tierz
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Miguel Tierz.

Additional information

ArXiv ePrint: 1810.05404

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santilli, L., Tierz, M. Large N phase transition in \( T\overline{T} \) -deformed 2d Yang-Mills theory on the sphere. J. High Energ. Phys. 2019, 54 (2019). https://doi.org/10.1007/JHEP01(2019)054

Download citation

  • Received: 22 October 2018

  • Accepted: 28 December 2018

  • Published: 07 January 2019

  • DOI: https://doi.org/10.1007/JHEP01(2019)054

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Field Theories in Lower Dimensions
  • Matrix Models
  • Nonperturbative Effects
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature