Entanglement of purification: from spin chains to holography


Purification is a powerful technique in quantum physics whereby a mixed quantum state is extended to a pure state on a larger system. This process is not unique, and in systems composed of many degrees of freedom, one natural purification is the one with minimal entanglement. Here we study the entropy of the minimally entangled purification, called the entanglement of purification, in three model systems: an Ising spin chain, conformal field theories holographically dual to Einstein gravity, and random stabilizer tensor networks. We conjecture values for the entanglement of purification in all these models, and we support our conjectures with a variety of numerical and analytical results. We find that such minimally entangled purifications have a number of applications, from enhancing entanglement-based tensor network methods for describing mixed states to elucidating novel aspects of the emergence of geometry from entanglement in the AdS/CFT correspondence.

A preprint version of the article is available at ArXiv.


  1. [1]

    A.E. Feiguin and S.R. White, Finite-temperature density matrix renormalization using an enlarged Hilbert space, Phys. Rev. B 72 (2005) 220401 [cond-mat/0510124].

  2. [2]

    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  4. [4]

    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

  5. [5]

    W. Israel, Thermo field dynamics of black holes, Phys. Lett. A 57 (1976) 107 [INSPIRE].

  6. [6]

    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  7. [7]

    B. Swingle, Entanglement renormalization and holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].

  8. [8]

    B.M. Terhal, M. Horodecki, D.W. Leung and D.P. DiVincenzo, The entanglement of purification, J. Math. Phys. 43 (2002) 4286 [quant-ph/0202044].

  9. [9]

    P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality from random tensor networks, JHEP 11 (2016) 009 [arXiv:1601.01694] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  10. [10]

    S. Nezami and M. Walter, Multipartite entanglement in stabilizer tensor networks, arXiv:1608.02595 [INSPIRE].

  11. [11]

    M. Fannes, B. Nachtergaele and R.F. Werner, Finitely correlated states on quantum spin chains, Commun. Math. Phys. 144 (1992) 443 [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  12. [12]

    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  13. [13]

    S. Bagchi and A.K. Pati, Monogamy, polygamy, and other properties of entanglement of purification, Phys. Rev. A 91 (2015) 042323 [arXiv:1502.01272].

  14. [14]

    M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].

    Article  ADS  Google Scholar 

  15. [15]

    B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  16. [16]

    D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  17. [17]

    T. Takayanagi and K. Umemoto, Holographic entanglement of purification, arXiv:1708.09393 [INSPIRE].

  18. [18]

    F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149 [arXiv:1503.06237] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  19. [19]

    P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in quantum field theory, Phys. Rev. Lett. 109 (2012) 130502 [arXiv:1206.3092] [INSPIRE].

    Article  ADS  Google Scholar 

  20. [20]

    P. Chaturvedi, V. Malvimat and G. Sengupta, Entanglement negativity, holography and black holes, arXiv:1602.01147 [INSPIRE].

  21. [21]

    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  22. [22]

    V.E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni, Holographic entanglement plateaux, JHEP 08 (2013) 092 [arXiv:1306.4004] [INSPIRE].

    Article  ADS  Google Scholar 

  23. [23]

    J. Hauschild, E. Altman, M. Zaletel and F. Pollmann, Finding purifications with minimal entanglement, under final preparation.

  24. [24]

    S. Östlund and S. Rommer, Thermodynamic limit of density matrix renormalization for the spin-1 Heisenberg chain, Phys. Rev. Lett. 75 (1995) 3537 [cond-mat/9503107] [INSPIRE].

  25. [25]

    F. Verstraete, J.J. García-Ripoll and J.I. Cirac, Matrix product density operators: simulation of finite-temperature and dissipative systems, Phys. Rev. Lett. 93 (2004) 207204.

  26. [26]

    U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Ann. Phys. 326 (2011) 96 [arXiv:1008.3477].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  27. [27]

    C. Karrasch, J.H. Bardarson and J.E. Moore, Reducing the numerical effort of finite-temperature density matrix renormalization group calculations, New J. Phys. 15 (2013) 083031.

  28. [28]

    G. Vidal, Classical simulation of infinite-size quantum lattice systems in one spatial dimension, Phys. Rev. Lett. 98 (2007) 070201 [cond-mat/0605597] [INSPIRE].

  29. [29]

    G. Evenbly and G. Vidal, Algorithms for entanglement renormalization, Phys. Rev. B 79 (2009) 144108 [arXiv:0707.1454] [INSPIRE].

  30. [30]

    I. Peschel and V. Eisler, Reduced density matrices and entanglement entropy in free lattice models, J. Phys. A 42 (2009) 504003 [arXiv:0906.1663].

  31. [31]

    T. Takayanagi, Holographic dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].

    Article  ADS  Google Scholar 

  32. [32]

    S.Y. Looi and R.B. Griffiths, Tripartite entanglement in qudit stabilizer states and application in quantum error correction, Phys. Rev. A 84 (2011) 052306.

  33. [33]

    S. Bravyi, D. Fattal and D. Gottesman, GHZ extraction yield for multipartite stabilizer states, J. Math. Phys. 47 (2006) 062106.

    MathSciNet  Article  MATH  ADS  Google Scholar 

  34. [34]

    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  35. [35]

    T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  36. [36]

    I.A. Morrison and M.M. Roberts, Mutual information between thermo-field doubles and disconnected holographic boundaries, JHEP 07 (2013) 081 [arXiv:1211.2887] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  37. [37]

    P. Hayden, M. Headrick and A. Maloney, Holographic mutual information is monogamous, Phys. Rev. D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].

  38. [38]

    A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  39. [39]

    B. Czech, P. Hayden, N. Lashkari and B. Swingle, The information theoretic interpretation of the length of a curve, JHEP 06 (2015) 157 [arXiv:1410.1540] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  40. [40]

    M. Freedman and M. Headrick, Bit threads and holographic entanglement, Commun. Math. Phys. 352 (2017) 407 [arXiv:1604.00354] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  41. [41]

    E. Beltrami, Saggio di interpretazione della geometria non-euclidea (in Italian), Giornale di Mathematiche VI (1868) 285.

  42. [42]

    E. Beltrami, Teoria fondamentale degli spazii di curvatura costante (in Italian), Annali. Mat. Ser. II 2 (1868) 232.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to Phuc Nguyen.

Additional information

ArXiv ePrint: 1709.07424

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, P., Devakul, T., Halbasch, M.G. et al. Entanglement of purification: from spin chains to holography. J. High Energ. Phys. 2018, 98 (2018). https://doi.org/10.1007/JHEP01(2018)098

Download citation


  • AdS-CFT Correspondence
  • Gauge-gravity correspondence
  • Models of Quantum Gravity