Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Wrapping rules (in) string theory

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 11 January 2018
  • Volume 2018, article number 46, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Wrapping rules (in) string theory
Download PDF
  • Eric A. Bergshoeff1 &
  • Fabio Riccioni2 
  • 402 Accesses

  • 8 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

In this paper we show that the number of all 1/2-BPS branes in string theory compactified on a torus can be derived by universal wrapping rules whose formulation we present. These rules even apply to branes in less than ten dimensions whose ten-dimensional origin is an exotic brane. In that case the wrapping rules contain an additional combinatorial factor that is related to the highest dimension in which the ten-dimensional exotic brane, after compactification, can be realized as a standard brane. We show that the wrapping rules also apply to cases with less supersymmetry. As a specific example, we discuss the compactification of IIA/IIB string theory on (T4/ℤ2) × Tn.

Article PDF

Download to read the full article text

Similar content being viewed by others

Non-geometric BPS branes on T-folds

Article Open access 22 February 2024

String theory realizations of the nilpotent goldstino

Article Open access 09 December 2015

Exact stringy microstates from gauge theories

Article Open access 23 November 2022
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. J. Polchinski, String theory. Volume 1: An introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998).

  4. J. Polchinski, String theory. Volume 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).

  5. K. Becker, M. Becker and J.H. Schwarz, String theory and M-theory: A modern introduction, Cambridge University Press, Cambridge U.K. (2007).

  6. A. Kleinschmidt, I. Schnakenburg and P.C. West, Very extended Kac-Moody algebras and their interpretation at low levels, Class. Quant. Grav. 21 (2004) 2493 [hep-th/0309198] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  8. E.A. Bergshoeff, M. de Roo, S.F. Kerstan and F. Riccioni, IIB supergravity revisited, JHEP 08 (2005) 098 [hep-th/0506013] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. E.A. Bergshoeff, M. de Roo, S.F. Kerstan, T. Ortín and F. Riccioni, IIA ten-forms and the gauge algebras of maximal supergravity theories, JHEP 07 (2006) 018 [hep-th/0602280] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. E.A. Bergshoeff, J. Hartong, P.S. Howe, T. Ortín and F. Riccioni, IIA/IIB Supergravity and Ten-forms, JHEP 05 (2010) 061 [arXiv:1004.1348] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. F. Riccioni and P.C. West, The E 11 origin of all maximal supergravities, JHEP 07 (2007) 063 [arXiv:0705.0752] [INSPIRE].

    Article  ADS  Google Scholar 

  12. E.A. Bergshoeff, I. De Baetselier and T.A. Nutma, E 11 and the embedding tensor, JHEP 09 (2007) 047 [arXiv:0705.1304] [INSPIRE].

    Article  ADS  Google Scholar 

  13. B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  14. H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. E.A. Bergshoeff and F. Riccioni, D-Brane Wess-Zumino Terms and U-duality, JHEP 11 (2010) 139 [arXiv:1009.4657] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. E.A. Bergshoeff and F. Riccioni, The D-brane U-scan, Proc. Symp. Pure Math. 85 (2012) 313 [arXiv:1109.1725] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  18. E.A. Bergshoeff, A. Marrani and F. Riccioni, Brane orbits, Nucl. Phys. B 861 (2012) 104 [arXiv:1201.5819] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. E.A. Bergshoeff, F. Riccioni and L. Romano, Branes, Weights and Central Charges, JHEP 06 (2013) 019 [arXiv:1303.0221] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. A. Kleinschmidt, Counting supersymmetric branes, JHEP 10 (2011) 144 [arXiv:1109.2025] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. E.A. Bergshoeff and F. Riccioni, String Solitons and T-duality, JHEP 05 (2011) 131 [arXiv:1102.0934] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. E.A. Bergshoeff and F. Riccioni, Branes and wrapping rules, Phys. Lett. B 704 (2011) 367 [arXiv:1108.5067] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. E.A. Bergshoeff, T. Ortín and F. Riccioni, Defect Branes, Nucl. Phys. B 856 (2012) 210 [arXiv:1109.4484] [INSPIRE].

  24. S. Elitzur, A. Giveon, D. Kutasov and E. Rabinovici, Algebraic aspects of matrix theory on T d, Nucl. Phys. B 509 (1998) 122 [hep-th/9707217] [INSPIRE].

  25. N.A. Obers and B. Pioline, U-duality and M-theory, Phys. Rept. 318 (1999) 113 [hep-th/9809039] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  26. E. Lozano-Tellechea and T. Ortín, 7-branes and higher Kaluza-Klein branes, Nucl. Phys. B 607 (2001) 213 [hep-th/0012051] [INSPIRE].

  27. J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. J. de Boer and M. Shigemori, Exotic Branes in String Theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. E.A. Bergshoeff and F. Riccioni, Dual doubled geometry, Phys. Lett. B 702 (2011) 281 [arXiv:1106.0212] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. D.M. Lombardo, F. Riccioni and S. Risoli, P fluxes and exotic branes, JHEP 12 (2016) 114 [arXiv:1610.07975] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. G. Pradisi and F. Riccioni, Non-geometric orbifolds and wrapping rules, JHEP 09 (2014) 170 [arXiv:1407.5576] [INSPIRE].

    Article  ADS  Google Scholar 

  32. E.A. Bergshoeff and F. Riccioni, Heterotic wrapping rules, JHEP 01 (2013) 005 [arXiv:1210.1422] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. E.A. Bergshoeff, C. Condeescu, G. Pradisi and F. Riccioni, Heterotic-Type II duality and wrapping rules, JHEP 12 (2013) 057 [arXiv:1311.3578] [INSPIRE].

    Article  ADS  Google Scholar 

  34. E.A. Bergshoeff, F. Riccioni and L. Romano, Towards a classification of branes in theories with eight supercharges, JHEP 05 (2014) 070 [arXiv:1402.2557] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  36. C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. E.A. Bergshoeff, O. Hohm, V.A. Penas and F. Riccioni, Dual Double Field Theory, JHEP 06 (2016) 026 [arXiv:1603.07380] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. C.M. Hull, Strongly coupled gravity and duality, Nucl. Phys. B 583 (2000) 237 [hep-th/0004195] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. X. Bekaert, N. Boulanger and M. Henneaux, Consistent deformations of dual formulations of linearized gravity: A No go result, Phys. Rev. D 67 (2003) 044010 [hep-th/0210278] [INSPIRE].

  41. X. Bekaert, N. Boulanger and S. Cnockaert, No self-interaction for two-column massless fields, J. Math. Phys. 46 (2005) 012303 [hep-th/0407102] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands

    Eric A. Bergshoeff

  2. INFN Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 2, Roma, 00185, Italy

    Fabio Riccioni

Authors
  1. Eric A. Bergshoeff
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Fabio Riccioni
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Eric A. Bergshoeff.

Additional information

ArXiv ePrint: 1710.00642

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergshoeff, E.A., Riccioni, F. Wrapping rules (in) string theory. J. High Energ. Phys. 2018, 46 (2018). https://doi.org/10.1007/JHEP01(2018)046

Download citation

  • Received: 13 October 2017

  • Accepted: 31 December 2017

  • Published: 11 January 2018

  • DOI: https://doi.org/10.1007/JHEP01(2018)046

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • String Duality
  • p-branes
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature