4D scattering amplitudes and asymptotic symmetries from 2D CFT

Abstract

We reformulate the scattering amplitudes of 4D flat space gauge theory and gravity in the language of a 2D CFT on the celestial sphere. The resulting CFT structure exhibits an OPE constructed from 4D collinear singularities, as well as infinite-dimensional Kac-Moody and Virasoro algebras encoding the asymptotic symmetries of 4D flat space. We derive these results by recasting 4D dynamics in terms of a convenient foliation of flat space into 3D Euclidean AdS and Lorentzian dS geometries. Tree-level scattering amplitudes take the form of Witten diagrams for a continuum of (A)dS modes, which are in turn equivalent to CFT correlators via the (A)dS/CFT dictionary. The Ward identities for the 2D conserved currents are dual to 4D soft theorems, while the bulk-boundary propagators of massless (A)dS modes are superpositions of the leading and subleading Weinberg soft factors of gauge theory and gravity. In general, the massless (A)dS modes are 3D Chern-Simons gauge fields describing the soft, single helicity sectors of 4D gauge theory and gravity. Consistent with the topological nature of Chern-Simons theory, Aharonov-Bohm effects record the “tracks” of hard particles in the soft radiation, leading to a simple characterization of gauge and gravitational memories. Soft particle exchanges between hard processes define the Kac-Moody level and Virasoro central charge, which are thereby related to the 4D gauge coupling and gravitational strength in units of an infrared cutoff. Finally, we discuss a toy model for black hole horizons via a restriction to the Rindler region.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    J. Polchinski, Introduction to gauge/gravity duality, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2010), (2010), pg. 3 [arXiv:1010.6134] [INSPIRE].

  6. [6]

    R. Sundrum, From fixed points to the fifth dimension, Phys. Rev. D 86 (2012) 085025 [arXiv:1106.4501] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    J. Penedones, TASI lectures on AdS/CFT, arXiv:1608.04948 [INSPIRE].

  8. [8]

    J. Polchinski, S matrices from AdS space-time, hep-th/9901076 [INSPIRE].

  9. [9]

    L. Susskind, Holography in the flat space limit, hep-th/9901079 [INSPIRE].

  10. [10]

    M. Gary, S.B. Giddings and J. Penedones, Local bulk S-matrix elements and CFT singularities, Phys. Rev. D 80 (2009) 085005 [arXiv:0903.4437] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    A.L. Fitzpatrick and J. Kaplan, Scattering states in AdS/CFT, arXiv:1104.2597 [INSPIRE].

  13. [13]

    A.L. Fitzpatrick and J. Kaplan, Analyticity and the holographic S-matrix, JHEP 10 (2012) 127 [arXiv:1111.6972] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    A.L. Fitzpatrick and J. Kaplan, Unitarity and the holographic S-matrix, JHEP 10 (2012) 032 [arXiv:1112.4845] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap I: QFT in AdS, arXiv:1607.06109 [INSPIRE].

  16. [16]

    M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap II: two dimensional amplitudes, arXiv:1607.06110 [INSPIRE].

  17. [17]

    J. de Boer and S.N. Solodukhin, A holographic reduction of Minkowski space-time, Nucl. Phys. B 665 (2003) 545 [hep-th/0303006] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  18. [18]

    S.N. Solodukhin, Reconstructing Minkowski space-time, IRMA Lect. Math. Theor. Phys. 8 (2005) 123 [hep-th/0405252] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  19. [19]

    P.D. Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Grad. Texts Contemp. Phys., Springer, New York U.S.A. (1997) [INSPIRE].

  20. [20]

    Strominger, Asymptotic symmetries of Yang-Mills theory, JHEP 07 (2014) 151 [arXiv:1308.0589] [INSPIRE].

  21. [21]

    T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New symmetries of massless QED, JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    T. He, P. Mitra and A. Strominger, 2D Kac-Moody symmetry of 4D Yang-Mills theory, JHEP 10 (2016) 137 [arXiv:1503.02663] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    D. Kapec, M. Pate and A. Strominger, New symmetries of QED, arXiv:1506.02906 [INSPIRE].

  24. [24]

    Strominger, Magnetic corrections to the soft photon theorem, Phys. Rev. Lett. 116 (2016) 031602 [arXiv:1509.00543] [INSPIRE].

  25. [25]

    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].

  26. [26]

    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].

  27. [27]

    G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett. 105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    Strominger, On BMS invariance of gravitational scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].

  29. [29]

    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Semiclassical Virasoro symmetry of the quantum gravity S-matrix, JHEP 08 (2014) 058 [arXiv:1406.3312] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    V. Lysov, S. Pasterski and A. Strominger, Low’s subleading soft theorem as a symmetry of QED, Phys. Rev. Lett. 113 (2014) 111601 [arXiv:1407.3814] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    T.T. Dumitrescu, T. He, P. Mitra and A. Strominger, Infinite-dimensional fermionic symmetry in supersymmetric gauge theories, arXiv:1511.07429 [INSPIRE].

  33. [33]

    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  35. [35]

    T.H. Burnett and N.M. Kroll, Extension of the low soft photon theorem, Phys. Rev. Lett. 20 (1968) 86 [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    C.D. White, Factorization properties of soft graviton amplitudes, JHEP 05 (2011) 060 [arXiv:1103.2981] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. [37]

    F. Cachazo and A. Strominger, Evidence for a new soft graviton theorem, arXiv:1404.4091 [INSPIRE].

  38. [38]

    L. Bieri and D. Garfinkle, An electromagnetic analogue of gravitational wave memory, Class. Quant. Grav. 30 (2013) 195009 [arXiv:1307.5098] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. [39]

    S. Pasterski, Asymptotic symmetries and electromagnetic memory, arXiv:1505.00716 [INSPIRE].

  40. [40]

    L. Susskind, Electromagnetic memory, arXiv:1507.02584 [INSPIRE].

  41. [41]

    Y. Zeldovich and A. Polnarev, Radiation of gravitational waves by a cluster of superdense stars, Sov. Astron. 18 (1974) 17.

    ADS  Google Scholar 

  42. [42]

    V.B. Braginsky and K.S. Thorne, Gravitational-wave bursts with memory and experimental prospects, Nature 327 (1987) 123.

    ADS  Article  Google Scholar 

  43. [43]

    D. Christodoulou, Nonlinear nature of gravitation and gravitational wave experiments, Phys. Rev. Lett. 67 (1991) 1486 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. [44]

    Strominger and A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].

  45. [45]

    S. Pasterski, A. Strominger and A. Zhiboedov, New gravitational memories, JHEP 12 (2016) 053 [arXiv:1502.06120] [INSPIRE].

    Article  Google Scholar 

  46. [46]

    Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115 (1959) 485 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  47. [47]

    G.W. Moore and N. Read, Nonabelions in the fractional quantum Hall effect, Nucl. Phys. B 360 (1991) 362 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. [48]

    X.G. Wen, Non-Abelian statistics in the fractional quantum Hall states, Phys. Rev. Lett. 66 (1991) 802 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  49. [49]

    Y.-T. Chien, M.D. Schwartz, D. Simmons-Duffin and I.W. Stewart, Jet physics from static charges in AdS, Phys. Rev. D 85 (2012) 045010 [arXiv:1109.6010] [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    M. Campiglia and A. Laddha, Asymptotic symmetries of QED and Weinberg’s soft photon theorem, JHEP 07 (2015) 115 [arXiv:1505.05346] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. [51]

    R.N.C. Costa, Holographic reconstruction and renormalization in asymptotically Ricci-flat spacetimes, JHEP 11 (2012) 046 [arXiv:1206.3142] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].

  53. [53]

    E. Witten, Quantum gravity in de Sitter space, in Strings 2001: International Conference, Mumbai India January 5–10 2001 [hep-th/0106109] [INSPIRE].

  54. [54]

    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

  55. [55]

    D. Anninos, T. Hartman and A. Strominger, Higher spin realization of the dS/CFT correspondence, Class. Quant. Grav. 34 (2017) 015009 [arXiv:1108.5735] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  56. [56]

    P.A.M. Dirac, Wave equations in conformal space, Annals Math. 37 (1936) 429 [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  57. [57]

    L. Cornalba, M.S. Costa and J. Penedones, Deep inelastic scattering in conformal QCD, JHEP 03 (2010) 133 [arXiv:0911.0043] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  58. [58]

    S. Weinberg, Six-dimensional methods for four-dimensional conformal field theories, Phys. Rev. D 82 (2010) 045031 [arXiv:1006.3480] [INSPIRE].

    ADS  Google Scholar 

  59. [59]

    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  60. [60]

    M.S. Costa, V. Goncalves and J. Penedones, Spinning AdS propagators, JHEP 09 (2014) 064 [arXiv:1404.5625] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  61. [61]

    V.P. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett. B 214 (1988) 215 [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  63. [63]

    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  64. [64]

    S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  65. [65]

    E. Witten, On holomorphic factorization of WZW and coset models, Commun. Math. Phys. 144 (1992) 189 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  66. [66]

    S. Gukov, E. Martinec, G.W. Moore and A. Strominger, Chern-Simons gauge theory and the AdS 3 /CFT 2 correspondence, hep-th/0403225 [INSPIRE].

  67. [67]

    S.W. Hawking, M.J. Perry and A. Strominger, Soft hair on black holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    D. Harlow, Jerusalem lectures on black holes and quantum information, Rev. Mod. Phys. 88 (2016) 15002 [arXiv:1409.1231] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    E. Witten, (2+ 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [INSPIRE].

  70. [70]

    E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].

  71. [71]

    G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  72. [72]

    D. Kapec, P. Mitra, A.-M. Raclariu and A. Strominger, A 2D stress tensor for 4D gravity, arXiv:1609.00282 [INSPIRE].

  73. [73]

    N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Camb. Monogr. Math. Phys., Cambridge Univ. Press, Cambridge U.K. (1984) [INSPIRE].

  74. [74]

    P. Breitenlohner and D.Z. Freedman, Positive energy in anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett. B 115 (1982) 197 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  75. [75]

    P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  76. [76]

    P.K. Townsend, K. Pilch and P. van Nieuwenhuizen, Selfduality in odd dimensions, Phys. Lett. B 136 (1984) 38 [Addendum ibid. B 137 (1984) 443] [INSPIRE].

  77. [77]

    R. Monteiro and D. O’Connell, The kinematic algebra from the self-dual sector, JHEP 07 (2011) 007 [arXiv:1105.2565] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  78. [78]

    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  79. [79]

    S. Axelrod and I.M. Singer, Chern-Simons perturbation theory, in Differential geometric methods in theoretical physics. Proceedings, 20th International Conference, New York U.S.A. June 3–7 1991, pg. 3 [hep-th/9110056] [INSPIRE].

  80. [80]

    S. Axelrod and I.M. Singer, Chern-Simons perturbation theory. II, J. Diff. Geom. 39 (1994) 173 [hep-th/9304087] [INSPIRE].

  81. [81]

    H. Leutwyler, A (2 + 1)-dimensional model for the quantum theory of gravity, Nuovo Cim. A 42 (1966) 159.

    ADS  Article  Google Scholar 

  82. [82]

    Staruszkiewicz, Gravitation theory in three-dimensional space, Acta Phys. Polon. 24 (1963) 735 [INSPIRE].

  83. [83]

    H. Kawai, D.C. Lewellen and S.-H. Henry Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  84. [84]

    S. Oxburgh and C.D. White, BCJ duality and the double copy in the soft limit, JHEP 02 (2013) 127 [arXiv:1210.1110] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  85. [85]

    J. Cardy, The ubiquitous ‘c’: from the Stefan-Boltzmann law to quantum information, J. Stat. Mech. 10 (2010) P10004 [arXiv:1008.2331] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  86. [86]

    Z. Bern, S. Davies and J. Nohle, On loop corrections to subleading soft behavior of gluons and gravitons, Phys. Rev. D 90 (2014) 085015 [arXiv:1405.1015] [INSPIRE].

    ADS  Google Scholar 

  87. [87]

    S. He, Y.-T. Huang and C. Wen, Loop corrections to soft theorems in gauge theories and gravity, JHEP 12 (2014) 115 [arXiv:1405.1410] [INSPIRE].

    ADS  Article  Google Scholar 

  88. [88]

    Z. Bern, S. Davies, P. Di Vecchia and J. Nohle, Low-energy behavior of gluons and gravitons from gauge invariance, Phys. Rev. D 90 (2014) 084035 [arXiv:1406.6987] [INSPIRE].

    ADS  Google Scholar 

  89. [89]

    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  90. [90]

    Stewart and C. Bauer, The soft-collinear effective theory, https://courses.edx.org/c4x/MITx/8.EFTx/asset/notes_scetnotes.pdf.

  91. [91]

    A.J. Larkoski, D. Neill and I.W. Stewart, Soft theorems from effective field theory, JHEP 06 (2015) 077 [arXiv:1412.3108] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Clifford Cheung.

Additional information

ArXiv ePrint: 1609.00732

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheung, C., de la Fuente, A. & Sundrum, R. 4D scattering amplitudes and asymptotic symmetries from 2D CFT. J. High Energ. Phys. 2017, 112 (2017). https://doi.org/10.1007/JHEP01(2017)112

Download citation

Keywords

  • AdS-CFT Correspondence
  • Conformal Field Theory
  • Scattering Amplitudes