Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Deep learning in color: towards automated quark/gluon jet discrimination
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Quark-Gluon Jet Discrimination Using Convolutional Neural Networks

15 February 2019

Jason Sang Hun Lee, Inkyu Park, … Seungjin Yang

Quark Gluon Jet Discrimination with Weakly Supervised Learning

12 November 2019

Jason Sang Hun Lee, Sang Man Lee, … Seungjin Yang

Quark jet versus gluon jet: fully-connected neural networks with high-level features

26 June 2019

Hui Luo, Ming-Xing Luo, … GuoHuai Zhu

A theory of quark vs. gluon discrimination

03 October 2019

Andrew J. Larkoski & Eric M. Metodiev

Systematic quark/gluon identification with ratios of likelihoods

05 December 2022

Samuel Bright-Thonney, Ian Moult, … Stefan Prestel

Recursive Neural Networks in Quark/Gluon Tagging

28 June 2018

Taoli Cheng

Deep Learning for the classification of quenched jets

29 November 2021

L. Apolinário, N. F. Castro, … F. C. R. Peres

Deep learning jet modifications in heavy-ion collisions

22 March 2021

Yi-Lun Du, Daniel Pablos & Konrad Tywoniuk

Neural network-based top tagger with two-point energy correlations and geometry of soft emissions

17 July 2020

Amit Chakraborty, Sung Hak Lim, … Michihisa Takeuchi

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 25 January 2017

Deep learning in color: towards automated quark/gluon jet discrimination

  • Patrick T. Komiske1,
  • Eric M. Metodiev1 &
  • Matthew D. Schwartz2 

Journal of High Energy Physics volume 2017, Article number: 110 (2017) Cite this article

  • 1872 Accesses

  • 168 Citations

  • 8 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Artificial intelligence offers the potential to automate challenging data-processing tasks in collider physics. To establish its prospects, we explore to what extent deep learning with convolutional neural networks can discriminate quark and gluon jets better than observables designed by physicists. Our approach builds upon the paradigm that a jet can be treated as an image, with intensity given by the local calorimeter deposits. We supplement this construction by adding color to the images, with red, green and blue intensities given by the transverse momentum in charged particles, transverse momentum in neutral particles, and pixel-level charged particle counts. Overall, the deep networks match or outperform traditional jet variables. We also find that, while various simulations produce different quark and gluon jets, the neural networks are surprisingly insensitive to these differences, similar to traditional observables. This suggests that the networks can extract robust physical information from imperfect simulations.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. ATLAS collaboration, A neural network clustering algorithm for the ATLAS silicon pixel detector, 2014 JINST 9 P09009 [arXiv:1406.7690] [INSPIRE].

  2. ATLAS collaboration, Performance of b-jet identification in the ATLAS experiment, 2016 JINST 11 P04008 [arXiv:1512.01094] [INSPIRE].

  3. M. Tosi, Performance of tracking, b-tagging and jet/MET reconstruction at the CMS high level trigger, J. Phys. Conf. Ser. 664 (2015) 082055.

    Article  Google Scholar 

  4. CMS collaboration, Performance of tau-lepton reconstruction and identification in CMS, 2012 JINST 7 P01001 [arXiv:1109.6034] [INSPIRE].

  5. NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].

  6. J. Gallicchio, J. Huth, M. Kagan, M.D. Schwartz, K. Black and B. Tweedie, Multivariate discrimination and the Higgs + W/Z search, JHEP 04 (2011) 069 [arXiv:1010.3698] [INSPIRE].

    Article  ADS  Google Scholar 

  7. T. Maggipinto et al., Role of neural networks in the search of the Higgs boson at LHC, Phys. Lett. B 409 (1997) 517 [hep-ex/9705020] [INSPIRE].

  8. CMS collaboration, Search for supersymmetry in events with opposite-sign dileptons and missing transverse energy using an artificial neural network, Phys. Rev. D 87 (2013) 072001 [arXiv:1301.0916] [INSPIRE].

  9. P. Baldi, P. Sadowski and D. Whiteson, Enhanced Higgs boson to τ + τ − search with deep learning, Phys. Rev. Lett. 114 (2015) 111801 [arXiv:1410.3469] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J. Cogan, M. Kagan, E. Strauss and A. Schwarztman, Jet-images: computer vision inspired techniques for jet tagging, JHEP 02 (2015) 118 [arXiv:1407.5675] [INSPIRE].

    Article  ADS  Google Scholar 

  11. L.G. Almeida, M. Backović, M. Cliche, S.J. Lee and M. Perelstein, Playing tag with ANN: boosted top identification with pattern recognition, JHEP 07 (2015) 086 [arXiv:1501.05968] [INSPIRE].

    Article  ADS  Google Scholar 

  12. L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-images — Deep learning edition, JHEP 07 (2016) 069 [arXiv:1511.05190] [INSPIRE].

    Article  Google Scholar 

  13. P. Baldi, K. Bauer, C. Eng, P. Sadowski and D. Whiteson, Jet substructure classification in high-energy physics with deep neural networks, Phys. Rev. D 93 (2016) 094034 [arXiv:1603.09349] [INSPIRE].

    ADS  Google Scholar 

  14. D. Guest, J. Collado, P. Baldi, S.-C. Hsu, G. Urban and D. Whiteson, Jet flavor classification in high-energy physics with deep neural networks, Phys. Rev. D 94 (2016) 112002 [arXiv:1607.08633] [INSPIRE].

    ADS  Google Scholar 

  15. J. Barnard, E.N. Dawe, M.J. Dolan and N. Rajcic, Parton shower uncertainties in jet substructure analyses with deep neural networks, arXiv:1609.00607 [INSPIRE].

  16. A. Krizhevsky, I. Sutskever and G.E. Hinton, Imagenet classification with deep convolutional neural networks, in the proceedings of Neural Information Processing Systems (NIPS 2012), December 3-8, Lake Tahoe, U.S.A. (2012).

  17. J. Pumplin, How to tell quark jets from gluon jets, Phys. Rev. D 44 (1991) 2025 [INSPIRE].

    ADS  Google Scholar 

  18. L. Lönnblad, C. Peterson and T. Rögnvaldsson, Finding gluon jets with a neural trigger, Phys. Rev. Lett. 65 (1990) 1321.

    Article  ADS  Google Scholar 

  19. OPAL collaboration, A Study of differences between quark and gluon jets using vertex tagging of quark jets, Z. Phys. C 58 (1993) 387.

  20. OPAL collaboration, A direct observation of quark-gluon jet differences at LEP, Phys. Lett. B 265 (1991) 462.

  21. D. Ferreira de Lima, P. Petrov, D. Soper and M. Spannowsky, Quark-gluon tagging with shower deconstruction: unearthing dark matter and Higgs couplings, arXiv:1607.06031 [INSPIRE].

  22. A.J. Larkoski, J. Thaler and W.J. Waalewijn, Gaining (mutual) information about quark/gluon discrimination, JHEP 11 (2014) 129 [arXiv:1408.3122] [INSPIRE].

    Article  ADS  Google Scholar 

  23. B. Bhattacherjee, S. Mukhopadhyay, M.M. Nojiri, Y. Sakaki and B.R. Webber, Associated jet and subjet rates in light-quark and gluon jet discrimination, JHEP 04 (2015) 131 [arXiv:1501.04794] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. Gallicchio and M.D. Schwartz, Quark and gluon jet substructure, JHEP 04 (2013) 090 [arXiv:1211.7038] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J. Gallicchio and M.D. Schwartz, Quark and gluon tagging at the LHC, Phys. Rev. Lett. 107 (2011) 172001 [arXiv:1106.3076] [INSPIRE].

    Article  ADS  Google Scholar 

  26. J.R. Andersen et al., Les Houches 2015: physics at TeV colliders standard model working group report, arXiv:1605.04692 [INSPIRE].

  27. ATLAS collaboration, Light-quark and gluon jet discrimination in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 74 (2014) 3023 [arXiv:1405.6583] [INSPIRE].

  28. C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338] [INSPIRE].

    Article  ADS  Google Scholar 

  29. R. Collobert and J. Weston, A unified architecture for natural language processing: deep neural networks with multitask learning, in the proceedings of the 25th International Conference on Machine Learning, July 5-9, Helsinki, Finland (2008).

  30. P. Baldi, P. Sadowski and D. Whiteson, Searching for exotic particles in high-energy physics with deep learning, Nature Commun. 5 (2014) 4308 [arXiv:1402.4735] [INSPIRE].

    Article  ADS  Google Scholar 

  31. S. Dieleman, K.W. Willet and J. Dambre, Rotation-invariant convolutional neural networks for galaxy morphology prediction, Mon. Roy. Astron. Soc. 450 (2015) 1441 [arXiv:1503.07077].

    Article  ADS  Google Scholar 

  32. M.A. Nielsen, Neural networks and deep learning, Determination Press, U.S.A. (2015).

    Google Scholar 

  33. I. Goodfellow, Y. Bengio and A. Courville, Deep learning, MIT Press, U.S.A. (2016).

    Google Scholar 

  34. X. Glorot, A. Bordes and Y. Bengio, Deep sparse rectifier neural networks, in the proceedings of the 14th International Conference on Artificial Intelligence and Statistics, April 11-13, Ft. Lauderdale, U.S.A. (2011).

  35. K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (1989) 359.

    Article  Google Scholar 

  36. J. Schmidhuber, Deep learning in neural networks: an overview, Neural Netw. 61 (2015) 85 [arXiv:1404.7828].

    Article  Google Scholar 

  37. C. Szegedy et al., Going deeper with convolutions, in the proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 7-12, Boston U.S.A. (2015), arXiv:1409.4842.

  38. N. Srivastava et al., Dropout: a simple way to prevent neural networks from overfitting, JMLR 15 (2014) 1929.

    MathSciNet  MATH  Google Scholar 

  39. T. Sjöstrand, et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  40. M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    Article  ADS  Google Scholar 

  41. J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].

  42. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  44. D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].

    Article  ADS  Google Scholar 

  45. NNPDF collaboration, R.D. Ball et al., A determination of parton distributions with faithful uncertainty estimation, Nucl. Phys. B 809 (2009) 1 [Erratum ibid. B 816 (2009) 293] [arXiv:0808.1231] [INSPIRE].

  46. P.Y. Simard, D. Steinkraus and J.C. Platt, Best practices for convolutional neural networks applied to visual document analysis, ICDAR 3 (2003).

  47. F. Chollet, Keras, available at GitHub (2015).

  48. J. Bergstra et al., Theano: a CPU and GPU math compiler in Python, in the proceedings of the 9th Python in science conference, June 28-July 3, Austin, U.S.A. (2010).

  49. K. He, X. Zhang, S. Ren and J. Sun, Delving deep into rectifiers: surpassing human-level performance on imagenet classification, in the proceedings of the IEEE International Conference on Computer Vision, December 11-18, Santiago, Chile (2015).

  50. D. Kingma and J. Ba, Adam: a method for stochastic optimization, arXiv:1412.6980.

  51. J. Snoek, H. Larochelle and R.P. Adams, Practical bayesian optimization of machine learning algorithms, in the proceedings of Neural Information Processing Systems (NIPS 2012), December 3-8, Lake Tahoe, U.S.A. (2012), arXiv:1206.2944.

  52. CMS Collaboration, Particle-flow event reconstruction in CMS and Performance for Jets, Taus and MET, CMS-PAS-PFT-09-001 (2009).

  53. F. Pedregosa et al., Scikit-learn: machine learning in Python, JMLR 12 (2012) 2825.

    MathSciNet  MATH  Google Scholar 

  54. A.J. Larkoski, G.P. Salam and J. Thaler, Energy correlation functions for jet substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. H. Küçük, Measurement of the inclusive-jet cross-section in proton-proton collisions and study of quark-gluon jet discrimination with the ATLAS experiment at the LHC, Dissertation, University College London, London. U.K. (2016).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, U.S.A.

    Patrick T. Komiske & Eric M. Metodiev

  2. Department of Physics, Harvard University, Cambridge, MA, 02138, U.S.A.

    Matthew D. Schwartz

Authors
  1. Patrick T. Komiske
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Eric M. Metodiev
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Matthew D. Schwartz
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Eric M. Metodiev.

Additional information

ArXiv ePrint: 1612.01551

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Komiske, P.T., Metodiev, E.M. & Schwartz, M.D. Deep learning in color: towards automated quark/gluon jet discrimination. J. High Energ. Phys. 2017, 110 (2017). https://doi.org/10.1007/JHEP01(2017)110

Download citation

  • Received: 16 December 2016

  • Revised: 18 January 2017

  • Accepted: 18 January 2017

  • Published: 25 January 2017

  • DOI: https://doi.org/10.1007/JHEP01(2017)110

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Jets
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.