Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Flaxion: a minimal extension to solve puzzles in the standard model

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 23 January 2017
  • Volume 2017, article number 96, (2017)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Flaxion: a minimal extension to solve puzzles in the standard model
Download PDF
  • Yohei Ema1,
  • Koichi Hamaguchi1,2,
  • Takeo Moroi1,2 &
  • …
  • Kazunori Nakayama1,2 
  • 820 Accesses

  • 4 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We propose a minimal extension of the standard model which includes only one additional complex scalar field, flavon, with flavor-dependent global U(1) symmetry. It not only explains the hierarchical flavor structure in the quark and lepton sector (including neutrino sector), but also solves the strong CP problem by identifying the CP-odd component of the flavon as the QCD axion, which we call flaxion. Furthermore, the flaxion model solves the cosmological puzzles in the standard model, i.e., origin of dark matter, baryon asymmetry of the universe, and inflation. We show that the radial component of the flavon can play the role of inflaton without isocurvature nor domain wall problems. The dark matter abundance can be explained by the flaxion coherent oscillation, while the baryon asymmetry of the universe is generated through leptogenesis.

Article PDF

Download to read the full article text

Similar content being viewed by others

Supersymmetric flaxion

Article Open access 16 April 2018

Peccei-Quinn relaxion

Article Open access 24 January 2018

Addressing six standard model problems with Technically Natural Higgs models

Article Open access 11 October 2023
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  2. R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

    Article  ADS  Google Scholar 

  4. F. Wilczek, Problem of strong p and t invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].

    Article  ADS  Google Scholar 

  5. J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. 120B (1983) 127.

    Article  ADS  Google Scholar 

  6. L.F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. 120B (1983) 133.

    Article  ADS  Google Scholar 

  7. M. Dine and W. Fischler, The not so harmless axion, Phys. Lett. 120B (1983) 137.

    Article  ADS  Google Scholar 

  8. P. Langacker, R.D. Peccei and T. Yanagida, Invisible axions and light neutrinos: are they connected?, Mod. Phys. Lett. A 1 (1986) 541 [INSPIRE].

    Article  ADS  Google Scholar 

  9. T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95.

    Google Scholar 

  10. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

    Google Scholar 

  11. P. Minkowski, μ → eγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

  12. F. Wilczek, Axions and family symmetry breaking, Phys. Rev. Lett. 49 (1982) 1549 [INSPIRE].

    Article  ADS  Google Scholar 

  13. C.Q. Geng and J.N. Ng, Flavor connections and neutrino mass hierarchy invariant invisible axion models without domain wall problem, Phys. Rev. D 39 (1989) 1449 [INSPIRE].

    ADS  Google Scholar 

  14. Z.G. Berezhiani and M. Yu. Khlopov, Cosmology of spontaneously broken gauge family symmetry, Z. Phys. C 49 (1991) 73 [INSPIRE].

    Google Scholar 

  15. K.S. Babu and S.M. Barr, Family symmetry, gravity and the strong CP problem, Phys. Lett. B 300 (1993) 367 [hep-ph/9212219] [INSPIRE].

  16. M.E. Albrecht, T. Feldmann and T. Mannel, Goldstone bosons in effective theories with spontaneously broken flavour symmetry, JHEP 10 (2010) 089 [arXiv:1002.4798] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  17. C.S. Fong and E. Nardi, Spontaneous breaking of flavor symmetry avoids the strong CP problem, Phys. Rev. Lett. 111 (2013) 061601 [arXiv:1305.1627] [INSPIRE].

    Article  ADS  Google Scholar 

  18. Y.H. Ahn, Flavored Peccei-Quinn symmetry, Phys. Rev. D 91 (2015) 056005 [arXiv:1410.1634] [INSPIRE].

    ADS  Google Scholar 

  19. Y.H. Ahn, Flavored Universe dispatched via Axion and Neutrino, arXiv:1611.08359 [INSPIRE].

  20. A. Celis, J. Fuentes-Martin and H. Serodio, An invisible axion model with controlled FCNCs at tree level, Phys. Lett. B 741 (2015) 117 [arXiv:1410.6217] [INSPIRE].

    Article  Google Scholar 

  21. A. Celis, J. Fuentes-Martín and H. Serôdio, A class of invisible axion models with FCNCs at tree level, JHEP 12 (2014) 167 [arXiv:1410.6218] [INSPIRE].

  22. A. Salvio, A simple motivated completion of the standard model below the Planck scale: axions and right-handed neutrinos, Phys. Lett. B 743 (2015) 428 [arXiv:1501.03781] [INSPIRE].

    Article  ADS  Google Scholar 

  23. G. Ballesteros, J. Redondo, A. Ringwald and C. Tamarit, Unifying inflation with the axion, dark matter, baryogenesis and the seesaw mechanism, arXiv:1608.05414 [INSPIRE].

  24. G. Ballesteros, J. Redondo, A. Ringwald and C. Tamarit, Standard model-axion-seesaw-Higgs portal inflation. Five problems of particle physics and cosmology solved in one stroke, arXiv:1610.01639 [INSPIRE].

  25. R. Kallosh and A. Linde, Universality class in conformal inflation, JCAP 07 (2013) 002 [arXiv:1306.5220] [INSPIRE].

    Article  ADS  Google Scholar 

  26. S. Ferrara, R. Kallosh, A. Linde and M. Porrati, Minimal supergravity models of inflation, Phys. Rev. D 88 (2013) 085038 [arXiv:1307.7696] [INSPIRE].

    ADS  Google Scholar 

  27. R. Kallosh, A. Linde and D. Roest, Superconformal inflationary α-attractors, JHEP 11 (2013) 198 [arXiv:1311.0472] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. M. Galante, R. Kallosh, A. Linde and D. Roest, Unity of cosmological inflation attractors, Phys. Rev. Lett. 114 (2015) 141302 [arXiv:1412.3797] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  30. J.E. Kim, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].

    Article  ADS  Google Scholar 

  31. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].

    Article  ADS  Google Scholar 

  33. A.R. Zhitnitsky, On possible suppression of the axion hadron interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497] [INSPIRE].

  34. P.H. Frampton, S.L. Glashow and T. Yanagida, Cosmological sign of neutrino CP-violation, Phys. Lett. B 548 (2002) 119 [hep-ph/0208157] [INSPIRE].

  35. A. Ibarra and G.G. Ross, Neutrino phenomenology: the case of two right-handed neutrinos, Phys. Lett. B 591 (2004) 285 [hep-ph/0312138] [INSPIRE].

  36. T. Yanagida and J. Sato, Large lepton mixing in seesaw models: coset space family unification, Nucl. Phys. Proc. Suppl. 77 (1999) 293 [hep-ph/9809307] [INSPIRE].

  37. J. Sato and T. Yanagida, Low-energy predictions of lopsided family charges, Phys. Lett. B 493 (2000) 356 [hep-ph/0009205] [INSPIRE].

  38. P. Ramond, Neutrinos: a glimpse beyond the standard model, Nucl. Phys. Proc. Suppl. 77 (1999) 3 [hep-ph/9809401] [INSPIRE].

  39. J.E. Kim, Light pseudoscalars, particle physics and cosmology, Phys. Rept. 150 (1987) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  40. P. Sikivie, Experimental tests of the invisible axion, Phys. Rev. Lett. 51 (1983) 1415 [Erratum ibid. 52 (1984) 695] [INSPIRE].

  41. R. Bradley et al., Microwave cavity searches for dark-matter axions, Rev. Mod. Phys. 75 (2003) 777 [INSPIRE].

    Article  ADS  Google Scholar 

  42. P.W. Graham and S. Rajendran, New observables for direct detection of axion dark matter, Phys. Rev. D 88 (2013) 035023 [arXiv:1306.6088] [INSPIRE].

    ADS  Google Scholar 

  43. D. Budker, P.W. Graham, M. Ledbetter, S. Rajendran and A. Sushkov, Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr), Phys. Rev. X 4 (2014) 021030 [arXiv:1306.6089] [INSPIRE].

    Article  Google Scholar 

  44. E787 and E949 collaborations, S. Adler et al., Measurement of the K + → π + νν branching ratio, Phys. Rev. D 77 (2008) 052003 [arXiv:0709.1000] [INSPIRE].

  45. NA62 collaboration, M. Moulson, Search for \( {K}^{+}\to {\pi}^{+}\nu\ \overline{\nu} \) at NA62, arXiv:1611.04979 [INSPIRE].

  46. J.T. Goldman et al., Light boson emission in the decay of the μ +, Phys. Rev. D 36 (1987) 1543 [INSPIRE].

    ADS  Google Scholar 

  47. R.D. Bolton et al., Search for rare muon decays with the crystal box detector, Phys. Rev. D 38 (1988) 2077 [INSPIRE].

    ADS  Google Scholar 

  48. J.L. Feng, T. Moroi, H. Murayama and E. Schnapka, Third generation familons, b factories and neutrino cosmology, Phys. Rev. D 57 (1998) 5875 [hep-ph/9709411] [INSPIRE].

  49. I. Dorsner and S.M. Barr, Flavor exchange effects in models with Abelian flavor symmetry, Phys. Rev. D 65 (2002) 095004 [hep-ph/0201207] [INSPIRE].

  50. K. Tsumura and L. Velasco-Sevilla, Phenomenology of flavon fields at the LHC, Phys. Rev. D 81 (2010) 036012 [arXiv:0911.2149] [INSPIRE].

    ADS  Google Scholar 

  51. K. Huitu, V. Keus, N. Koivunen and O. Lebedev, Higgs-flavon mixing and h → μτ , JHEP 05 (2015) 026 [arXiv:1603.06614] [INSPIRE].

    ADS  Google Scholar 

  52. M. Bauer, T. Schell and T. Plehn, Hunting the flavon, Phys. Rev. D 94 (2016) 056003 [arXiv:1603.06950] [INSPIRE].

    ADS  Google Scholar 

  53. G.G. Raffelt, Stars as laboratories for fundamental physics: the astrophysics of neutrinos, axions, and other weakly interacting particles, Chicago University Press, Chicago U.S.A. (1996).

  54. G.G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys. 741 (2008) 51 [hep-ph/0611350] [INSPIRE].

  55. M.M. Miller Bertolami, B.E. Melendez, L.G. Althaus and J. Isern, Revisiting the axion bounds from the Galactic white dwarf luminosity function, JCAP 10 (2014) 069 [arXiv:1406.7712] [INSPIRE].

    Article  ADS  Google Scholar 

  56. S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

    Article  ADS  Google Scholar 

  57. P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept. 441 (2007) 191 [hep-ph/0601023] [INSPIRE].

  58. Super-Kamiokande collaboration, V. Takhistov, Review of nucleon decay searches at Super-Kamiokande, arXiv:1605.03235 [INSPIRE].

  59. M. Kawasaki and K. Nakayama, Axions: theory and cosmological role, Ann. Rev. Nucl. Part. Sci. 63 (2013) 69 [arXiv:1301.1123] [INSPIRE].

    Article  ADS  Google Scholar 

  60. M.S. Turner, Cosmic and local mass density of invisible axions, Phys. Rev. D 33 (1986) 889 [INSPIRE].

    ADS  Google Scholar 

  61. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].

  62. S. Antusch, S.F. King, M. Malinsky, L. Velasco-Sevilla and I. Zavala, Flavon inflation, Phys. Lett. B 666 (2008) 176 [arXiv:0805.0325] [INSPIRE].

    Article  ADS  Google Scholar 

  63. L. Kofman, A.D. Linde and A.A. Starobinsky, Nonthermal phase transitions after inflation, Phys. Rev. Lett. 76 (1996) 1011 [hep-th/9510119] [INSPIRE].

    Article  ADS  Google Scholar 

  64. S. Kasuya, M. Kawasaki and T. Yanagida, Cosmological axion problem in chaotic inflationary universe, Phys. Lett. B 409 (1997) 94 [hep-ph/9608405] [INSPIRE].

  65. S. Kasuya, M. Kawasaki and T. Yanagida, Domain wall problem of axion and isocurvature fluctuations in chaotic inflation models, Phys. Lett. B 415 (1997) 117 [hep-ph/9709202] [INSPIRE].

  66. M. Kawasaki, T.T. Yanagida and K. Yoshino, Domain wall and isocurvature perturbation problems in axion models, JCAP 11 (2013) 030 [arXiv:1305.5338] [INSPIRE].

    Article  ADS  Google Scholar 

  67. F. Takahashi, Linear inflation from running kinetic term in supergravity, Phys. Lett. B 693 (2010) 140 [arXiv:1006.2801] [INSPIRE].

    Article  ADS  Google Scholar 

  68. K. Nakayama and F. Takahashi, Running kinetic inflation, JCAP 11 (2010) 009 [arXiv:1008.2956] [INSPIRE].

    Article  ADS  Google Scholar 

  69. A.R. Liddle and D.H. Lyth, Cosmological inflation and large scale structure, Cambridge University Press, Cambridge U.K. (2000).

    Book  MATH  Google Scholar 

  70. M. Herranen, T. Markkanen, S. Nurmi and A. Rajantie, Spacetime curvature and Higgs stability after inflation, Phys. Rev. Lett. 115 (2015) 241301 [arXiv:1506.04065] [INSPIRE].

    Article  ADS  Google Scholar 

  71. Y. Ema, K. Mukaida and K. Nakayama, Fate of electroweak vacuum during preheating, JCAP 10 (2016) 043 [arXiv:1602.00483] [INSPIRE].

    Article  ADS  Google Scholar 

  72. K. Kohri and H. Matsui, Higgs vacuum metastability in primordial inflation, preheating and reheating, Phys. Rev. D 94 (2016) 103509 [arXiv:1602.02100] [INSPIRE].

    ADS  Google Scholar 

  73. K. Enqvist, M. Karciauskas, O. Lebedev, S. Rusak and M. Zatta, Postinflationary vacuum instability and Higgs-inflaton couplings, JCAP 11 (2016) 025 [arXiv:1608.08848] [INSPIRE].

    Article  ADS  Google Scholar 

  74. O. Lebedev, On stability of the electroweak vacuum and the Higgs portal, Eur. Phys. J. C 72 (2012) 2058 [arXiv:1203.0156] [INSPIRE].

    Article  ADS  Google Scholar 

  75. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    Article  ADS  Google Scholar 

  76. W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Annals Phys. 315 (2005) 305 [hep-ph/0401240] [INSPIRE].

  77. K. Hamaguchi, H. Murayama and T. Yanagida, Leptogenesis from N dominated early universe, Phys. Rev. D 65 (2002) 043512 [hep-ph/0109030] [INSPIRE].

  78. S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE].

  79. L. Covi and E. Roulet, Baryogenesis from mixed particle decays, Phys. Lett. B 399 (1997) 113 [hep-ph/9611425] [INSPIRE].

  80. A. Pilaftsis, Resonant CP-violation induced by particle mixing in transition amplitudes, Nucl. Phys. B 504 (1997) 61 [hep-ph/9702393] [INSPIRE].

  81. W. Buchmüller and M. Plümacher, CP asymmetry in Majorana neutrino decays, Phys. Lett. B 431 (1998) 354 [hep-ph/9710460] [INSPIRE].

  82. A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [INSPIRE].

  83. M. Garny, A. Kartavtsev and A. Hohenegger, Leptogenesis from first principles in the resonant regime, Annals Phys. 328 (2013) 26 [arXiv:1112.6428] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  84. A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavor issues in leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [INSPIRE].

  85. E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [INSPIRE].

  86. A. Abada, S. Davidson, A. Ibarra, F.X. Josse-Michaux, M. Losada and A. Riotto, Flavour matters in leptogenesis, JHEP 09 (2006) 010 [hep-ph/0605281] [INSPIRE].

  87. G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    Article  ADS  Google Scholar 

  88. M. Kawasaki, K. Saikawa and T. Sekiguchi, Axion dark matter from topological defects, Phys. Rev. D 91 (2015) 065014 [arXiv:1412.0789] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, The University of Tokyo, Tokyo, 133-0033, Japan

    Yohei Ema, Koichi Hamaguchi, Takeo Moroi & Kazunori Nakayama

  2. Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), University of Tokyo, Kashiwa, 277-8583, Japan

    Koichi Hamaguchi, Takeo Moroi & Kazunori Nakayama

Authors
  1. Yohei Ema
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Koichi Hamaguchi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Takeo Moroi
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Kazunori Nakayama
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Yohei Ema.

Additional information

ArXiv ePrint: 1612.05492

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ema, Y., Hamaguchi, K., Moroi, T. et al. Flaxion: a minimal extension to solve puzzles in the standard model. J. High Energ. Phys. 2017, 96 (2017). https://doi.org/10.1007/JHEP01(2017)096

Download citation

  • Received: 09 January 2017

  • Accepted: 12 January 2017

  • Published: 23 January 2017

  • DOI: https://doi.org/10.1007/JHEP01(2017)096

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Global Symmetries
  • Quark Masses and SM Parameters
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature