Skip to main content

Simultaneous explanation of the R K and \( {R}_{D^{\left(*\right)}} \) puzzles: a model analysis

A preprint version of the article is available at arXiv.

Abstract

R K and \( {R}_{D^{\left(*\right)}} \) are two B-decay measurements that presently exhibit discrepancies with the SM. Recently, using an effective field theory approach, it was demonstrated that a new-physics model can simultaneously explain both the R K and \( {R}_{D^{\left(*\right)}} \) puzzles. There are two UV completions that can give rise to the effective Lagrangian: (i) V B: a vector boson that transforms as an SU(2) L triplet, as in the SM, (ii) U 1: an SU(2) L -singlet vector leptoquark. In this paper, we examine these models individually. A key point is that V B contributes to \( {B}_s^0\hbox{-} {\overline{B}}_s^0 \) mixing and τ → 3μ, while U 1 does not. We show that, when constraints from these processes are taken into account, the V B model is just barely viable. It predicts \( \mathrm{\mathcal{B}}\left({\tau}^{-}\to {\mu}^{-}{\mu}^{+}{\mu}^{-}\right)\simeq 2.1\times {10}^{-8} \). This is measurable at Belle II and LHCb, and therefore constitutes a smoking-gun signal of V B. For U 1, there are several observables that may point to this model. Perhaps the most interesting is the lepton-flavor-violating decay Y(3S) → μτ, which has previously been overlooked in the literature. U 1 predicts \( {\left.\mathrm{\mathcal{B}}\left(\varUpsilon (3S)\to \mu \tau \right)\right|}_{\max }=8.0\times 1{0}^{-7} \). Thus, if a large value of \( \mathrm{\mathcal{B}}\left(\varUpsilon (3S)\to \mu \tau \right) \) is observed — and this should be measurable at Belle II — the U 1 model would be indicated.

References

  1. LHCb collaboration, Measurement of Form-Factor-Independent Observables in the Decay B 0 → K *0 μ + μ , Phys. Rev. Lett. 111 (2013) 191801 [arXiv:1308.1707] [INSPIRE].

  2. LHCb collaboration, Angular analysis of the B 0 → K *0 μ + μ decay using 3 fb −1 of integrated luminosity, JHEP 02 (2016) 104 [arXiv:1512.04442] [INSPIRE].

  3. U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, New observables in the decay mode \( {\overline{B}}_d\to {\overline{K}}^{\ast 0}{l}^{+}{l}^{-} \), JHEP 11 (2008) 032 [arXiv:0807.2589] [INSPIRE].

    ADS  Article  Google Scholar 

  4. Belle collaboration, A. Abdesselam et al., Angular analysis of B 0 → K *(892)0 + , arXiv:1604.04042 [INSPIRE].

  5. S. Descotes-Genon, T. Hurth, J. Matias and J. Virto, Optimizing the basis of B → K * ll observables in the full kinematic range, JHEP 05 (2013) 137 [arXiv:1303.5794] [INSPIRE].

    ADS  Article  Google Scholar 

  6. S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, On the impact of power corrections in the prediction of B → K * μ + μ observables, JHEP 12 (2014) 125 [arXiv:1407.8526] [INSPIRE].

    ADS  Article  Google Scholar 

  7. J. Lyon and R. Zwicky, Resonances gone topsy turvy — the charm of QCD or new physics in b → sℓ + ?, arXiv:1406.0566 [INSPIRE].

  8. S. Jäger and J. Martin Camalich, Reassessing the discovery potential of the B → K * + decays in the large-recoil region: SM challenges and BSM opportunities, Phys. Rev. D 93 (2016) 014028 [arXiv:1412.3183] [INSPIRE].

    ADS  Google Scholar 

  9. M. Ciuchini, M. Fedele, E. Franco, S. Mishima, A. Paul, L. Silvestrini et al., B → K * + decays at large recoil in the Standard Model: a theoretical reappraisal, JHEP 06 (2016) 116 [arXiv:1512.07157] [INSPIRE].

    ADS  Article  Google Scholar 

  10. S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, Global analysis of b → sℓℓ anomalies, JHEP 06 (2016) 092 [arXiv:1510.04239] [INSPIRE].

    ADS  Article  Google Scholar 

  11. T. Hurth, F. Mahmoudi and S. Neshatpour, On the anomalies in the latest LHCb data, Nucl. Phys. B 909 (2016) 737 [arXiv:1603.00865] [INSPIRE].

    ADS  Article  Google Scholar 

  12. LHCb collaboration, Differential branching fraction and angular analysis of the decay B 0 s  → ϕμ + μ , JHEP 07 (2013) 084 [arXiv:1305.2168] [INSPIRE].

  13. LHCb collaboration, Angular analysis and differential branching fraction of the decay B 0 s  → ϕμ + μ , JHEP 09 (2015) 179 [arXiv:1506.08777] [INSPIRE].

  14. R.R. Horgan, Z. Liu, S. Meinel and M. Wingate, Calculation of B 0 → K *0 μ + μ and B 0 s  → ϕμ + μ observables using form factors from lattice QCD, Phys. Rev. Lett. 112 (2014) 212003 [arXiv:1310.3887] [INSPIRE].

    ADS  Article  Google Scholar 

  15. R.R. Horgan, Z. Liu, S. Meinel and M. Wingate, Rare B decays using lattice QCD form factors, PoS(LATTICE2014)372 [arXiv:1501.00367] [INSPIRE].

  16. A. Bharucha, D.M. Straub and R. Zwicky, B → Vℓ + in the Standard Model from light-cone sum rules, JHEP 08 (2016) 098 [arXiv:1503.05534] [INSPIRE].

    ADS  Article  Google Scholar 

  17. LHCb collaboration, Test of lepton universality using B + → K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].

  18. M. Bordone, G. Isidori and A. Pattori, On the Standard Model predictions for R K and \( {R}_{K^{*}} \), Eur. Phys. J. C 76 (2016) 440 [arXiv:1605.07633] [INSPIRE].

    ADS  Article  Google Scholar 

  19. BaBar collaboration, J.P. Lees et al., Measurement of an Excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) Decays and Implications for Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].

  20. Belle collaboration, M. Huschle et al., Measurement of the branching ratio of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( \overline{B}\to {D}^{\left(\ast \right)}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].

  21. LHCb collaboration, Measurement of the ratio of branching fractions \( \mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett. 115 (2015) 111803 [Addendum ibid. 115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].

  22. B. Dumont, K. Nishiwaki and R. Watanabe, LHC constraints and prospects for S 1 scalar leptoquark explaining the \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \) anomaly, Phys. Rev. D 94 (2016) 034001 [arXiv:1603.05248] [INSPIRE].

    ADS  Article  Google Scholar 

  23. M. Tanaka and R. Watanabe, New physics in the weak interaction of \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 87 (2013) 034028 [arXiv:1212.1878] [INSPIRE].

    ADS  Google Scholar 

  24. A. Datta, M. Duraisamy and D. Ghosh, Explaining the B → K * μ + μ data with scalar interactions, Phys. Rev. D 89 (2014) 071501 [arXiv:1310.1937] [INSPIRE].

    ADS  Google Scholar 

  25. G. Hiller and M. Schmaltz, R K and future b → sℓℓ physics beyond the standard model opportunities, Phys. Rev. D 90 (2014) 054014 [arXiv:1408.1627] [INSPIRE].

    ADS  Google Scholar 

  26. D. Ghosh, M. Nardecchia and S.A. Renner, Hint of Lepton Flavour Non-Universality in B Meson Decays, JHEP 12 (2014) 131 [arXiv:1408.4097] [INSPIRE].

    ADS  Article  Google Scholar 

  27. T. Hurth, F. Mahmoudi and S. Neshatpour, Global fits to b → sℓℓ data and signs for lepton non-universality, JHEP 12 (2014) 053 [arXiv:1410.4545] [INSPIRE].

    ADS  Article  Google Scholar 

  28. W. Altmannshofer and D.M. Straub, New physics in b → s transitions after LHC run 1, Eur. Phys. J. C 75 (2015) 382 [arXiv:1411.3161] [INSPIRE].

    ADS  Article  Google Scholar 

  29. S.L. Glashow, D. Guadagnoli and K. Lane, Lepton Flavor Violation in B Decays?, Phys. Rev. Lett. 114 (2015) 091801 [arXiv:1411.0565] [INSPIRE].

    ADS  Article  Google Scholar 

  30. B. Bhattacharya, A. Datta, D. London and S. Shivashankara, Simultaneous Explanation of the R K and \( {R}_{D^{\left(\ast \right)}} \) Puzzles, Phys. Lett. B 742 (2015) 370 [arXiv:1412.7164] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  31. A. Datta, M. Duraisamy and D. Ghosh, Diagnosing New Physics in b → cτν τ decays in the light of the recent BaBar result, Phys. Rev. D 86 (2012) 034027 [arXiv:1206.3760] [INSPIRE].

    ADS  Google Scholar 

  32. A. Celis, M. Jung, X.-Q. Li and A. Pich, Sensitivity to charged scalars in B → D (*) τν τ and B → τν τ decays, JHEP 01 (2013) 054 [arXiv:1210.8443] [INSPIRE].

    ADS  Article  Google Scholar 

  33. A. Crivellin, A. Kokulu and C. Greub, Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure, Phys. Rev. D 87 (2013) 094031 [arXiv:1303.5877] [INSPIRE].

    ADS  Google Scholar 

  34. I. Doršner, S. Fajfer, N. Košnik and I. Nišandžić, Minimally flavored colored scalar in \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \) and the mass matrices constraints, JHEP 11 (2013) 084 [arXiv:1306.6493] [INSPIRE].

    ADS  Article  Google Scholar 

  35. M. Freytsis, Z. Ligeti and J.T. Ruderman, Flavor models for \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 92 (2015) 054018 [arXiv:1506.08896] [INSPIRE].

    ADS  Google Scholar 

  36. N.G. Deshpande and X.-G. He, Consequences of R-Parity violating interactions for anomalies in \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \) and b → sμ+μ−, arXiv:1608.04817 [INSPIRE].

  37. M.A. Ivanov, J.G. Körner and C.-T. Tran, Analyzing new physics in the decays \( {\overline{B}}^0\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) with form factors obtained from the covariant quark model, Phys. Rev. D 94 (2016) 094028 [arXiv:1607.02932] [INSPIRE].

    ADS  Google Scholar 

  38. M. Duraisamy and A. Datta, The Full \( B\to {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \) Angular Distribution and CP-violating Triple Products, JHEP 09 (2013) 059 [arXiv:1302.7031] [INSPIRE].

    ADS  Article  Google Scholar 

  39. M. Duraisamy, P. Sharma and A. Datta, Azimuthal \( B\to {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \) angular distribution with tensor operators, Phys. Rev. D 90 (2014) 074013 [arXiv:1405.3719] [INSPIRE].

    ADS  Google Scholar 

  40. Y. Sakaki, M. Tanaka, A. Tayduganov and R. Watanabe, Probing New Physics with q 2 distributions in \( \overline{B}\to {D}^{\left(*\right)}\tau \overline{\nu} \), Phys. Rev. D 91 (2015) 114028 [arXiv:1412.3761] [INSPIRE].

    ADS  Google Scholar 

  41. D. Das, C. Hati, G. Kumar and N. Mahajan, Towards a unified explanation of \( {R}_{D^{\left(\ast \right)}} \) , R K and (g − 2) μ anomalies in a left-right model with leptoquarks, Phys. Rev. D 94 (2016) 055034 [arXiv:1605.06313] [INSPIRE].

    ADS  Google Scholar 

  42. C.-J. Lee and J. Tandean, Minimal lepton flavor violation implications of the b → s anomalies, JHEP 08 (2015) 123 [arXiv:1505.04692] [INSPIRE].

    ADS  Article  Google Scholar 

  43. D. Bečirević, S. Fajfer and N. Košnik, Lepton flavor nonuniversality in b → sl + l processes, Phys. Rev. D 92 (2015) 014016 [arXiv:1503.09024] [INSPIRE].

    ADS  Google Scholar 

  44. L. Calibbi, A. Crivellin and T. Ota, Effective field theory approach to b → sℓℓ () , \( B\to {K}^{\left(*\right)}\nu \overline{\nu} \) and B → D (*) τν with third generation couplings, Phys. Rev. Lett. 115 (2015) 181801 [arXiv:1506.02661] [INSPIRE].

    ADS  Article  Google Scholar 

  45. BaBar collaboration, J.P. Lees et al., Search for \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) and invisible quarkonium decays, Phys. Rev. D 87 (2013) 112005 [arXiv:1303.7465] [INSPIRE].

  46. Belle collaboration, O. Lutz et al., Search for \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) with the full Belle Y(4S) data sample, Phys. Rev. D 87 (2013) 111103 [arXiv:1303.3719] [INSPIRE].

  47. R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184 [arXiv:1505.05164] [INSPIRE].

    ADS  Article  Google Scholar 

  48. A. Crivellin, G. D’Ambrosio and J. Heeck, Addressing the LHC flavor anomalies with horizontal gauge symmetries, Phys. Rev. D 91 (2015) 075006 [arXiv:1503.03477] [INSPIRE].

    ADS  Google Scholar 

  49. A. Greljo, G. Isidori and D. Marzocca, On the breaking of Lepton Flavor Universality in B decays, JHEP 07 (2015) 142 [arXiv:1506.01705] [INSPIRE].

    ADS  Article  Google Scholar 

  50. D. Aristizabal Sierra, F. Staub and A. Vicente, Shedding light on the b → s anomalies with a dark sector, Phys. Rev. D 92 (2015) 015001 [arXiv:1503.06077] [INSPIRE].

    ADS  Google Scholar 

  51. C.-W. Chiang, X.-G. He and G. Valencia, Zmodel for \( b\to s\ell \overline{\ell} \) flavor anomalies, Phys. Rev. D 93 (2016) 074003 [arXiv:1601.07328] [INSPIRE].

    ADS  Google Scholar 

  52. S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Non-abelian gauge extensions for B-decay anomalies, Phys. Lett. B 760 (2016) 214 [arXiv:1604.03088] [INSPIRE].

    ADS  Article  Google Scholar 

  53. Y. Sakaki, M. Tanaka, A. Tayduganov and R. Watanabe, Testing leptoquark models in \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 88 (2013) 094012 [arXiv:1309.0301] [INSPIRE].

    ADS  Google Scholar 

  54. B. Gripaios, M. Nardecchia and S.A. Renner, Composite leptoquarks and anomalies in B-meson decays, JHEP 05 (2015) 006 [arXiv:1412.1791] [INSPIRE].

    ADS  Article  Google Scholar 

  55. I. de Medeiros Varzielas and G. Hiller, Clues for flavor from rare lepton and quark decays, JHEP 06 (2015) 072 [arXiv:1503.01084] [INSPIRE].

    Article  Google Scholar 

  56. R. Barbieri, G. Isidori, A. Pattori and F. Senia, Anomalies in B-decays and U(2) flavour symmetry, Eur. Phys. J. C 76 (2016) 67 [arXiv:1512.01560] [INSPIRE].

    ADS  Article  Google Scholar 

  57. S. Fajfer and N. Košnik, Vector leptoquark resolution of R K and \( {R}_{D^{\left(\ast \right)}} \) puzzles, Phys. Lett. B 755 (2016) 270 [arXiv:1511.06024] [INSPIRE].

    ADS  Article  Google Scholar 

  58. S. Sahoo, R. Mohanta and A.K. Giri, Explaining R K and \( {R}_{D^{\left(\ast \right)}} \) anomalies with vector leptoquark, arXiv:1609.04367 [INSPIRE].

  59. A.J. Buras, J. Girrbach-Noe, C. Niehoff and D.M. Straub, \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) decays in the Standard Model and beyond, JHEP 02 (2015) 184 [arXiv:1409.4557] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  60. ALEPH collaboration, R. Barate et al., Measurements of \( BR\left(b\to {\tau}^{-}{\overline{\nu}}_{\tau }X\right) \) and \( BR\left(b\to {\tau}^{-}{\overline{\nu}}_{\tau }{D}^{\ast \pm }X\right) \) and upper limits on \( BR\left({B}^{-}\to {\tau}^{-}{\overline{\nu}}_{\tau}\right) \) and \( BR\left(b\to s\overline{\nu}\right) \), Eur. Phys. J. C 19 (2001) 213 [hep-ex/0010022] [INSPIRE].

  61. Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  62. A. Datta, X.G. He and S. Pakvasa, Quasiinclusive and exclusive decays of B to eta-prime, Phys. Lett. B 419 (1998) 369 [hep-ph/9707259] [INSPIRE].

  63. B. Bhattacharya and J.L. Rosner, Effect of η-ηmixing on D → PV decays, Phys. Rev. D 82 (2010) 037502 [arXiv:1005.2159] [INSPIRE].

    ADS  Google Scholar 

  64. Belle collaboration, Y. Miyazaki et al., Search for Lepton-Flavor-Violating tau Decays into a Lepton and a Vector Meson, Phys. Lett. B 699 (2011) 251 [arXiv:1101.0755] [INSPIRE].

  65. G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].

  66. S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 74 (2014) 2890 [arXiv:1310.8555] [INSPIRE].

    ADS  Article  Google Scholar 

  67. S. Aoki et al., Review of lattice results concerning low-energy particle physics, arXiv:1607.00299 [INSPIRE].

  68. J. Charles et al., Current status of the Standard Model CKM fit and constraints on ΔF = 2 New Physics, Phys. Rev. D 91 (2015) 073007 [arXiv:1501.05013] [INSPIRE].

    ADS  Google Scholar 

  69. K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].

  70. Heavy Flavor Averaging Group (HFAG) collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE].

  71. K. Hayasaka et al., Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced Tau+Tau- Pairs, Phys. Lett. B 687 (2010) 139 [arXiv:1001.3221] [INSPIRE].

    ADS  Article  Google Scholar 

  72. F. Feruglio, P. Paradisi and A. Pattori, Revisiting Lepton Flavour Universality in B Decays, arXiv:1606.00524 [INSPIRE].

  73. David Straub, flavio v0.11, 2016, http://dx.doi.org/10.5281/zenodo.59840.

  74. J.-G. Shiu (National Taiwan University) on behalf of the Belle II collaboration, BelleII: physics and early measurements, talk given at Beauty 2016, Marseille, France, https://indico.cern.ch/event/352928/contributions/1757317.

  75. LHCb collaboration, Letter of Intent for the LHCb Upgrade, CERN-LHCC-2011-001.

  76. BaBar collaboration, B. Aubert et al., Search for the decay B + → K + τ μ ±, Phys. Rev. Lett. 99 (2007) 201801 [arXiv:0708.1303] [INSPIRE].

  77. S. Robertson and P. Urquijo, private communication.

  78. BaBar collaboration, J.P. Lees et al., Search for B + → K + τ + τ at the BaBar experiment, arXiv:1605.09637 [INSPIRE].

  79. T. Gershon, F. Polci and J. Serrano, private communication.

  80. A. Datta, P.J. O’Donnell, S. Pakvasa and X. Zhang, Flavor changing processes in quarkonium decays, Phys. Rev. D 60 (1999) 014011 [hep-ph/9812325] [INSPIRE].

  81. BaBar collaboration, J.P. Lees et al., Search for Charged Lepton Flavor Violation in Narrow Upsilon Decays, Phys. Rev. Lett. 104 (2010) 151802 [arXiv:1001.1883] [INSPIRE].

  82. CLEO collaboration, W. Love et al., Search for Lepton Flavor Violation in Upsilon Decays, Phys. Rev. Lett. 101 (2008) 201601 [arXiv:0807.2695] [INSPIRE].

  83. D.A. Faroughy, A. Greljo and J.F. Kamenik, Confronting lepton flavor universality violation in B decays with high-p T tau lepton searches at LHC, Phys. Lett. B 764 (2017) 126 [arXiv:1609.07138] [INSPIRE].

    ADS  Article  Google Scholar 

  84. A. Abdesselam et al., Measurement of the τ lepton polarization in the decay \( \overline{B}\to {D}^{\ast }{\tau}^{-}\overline{\nu}\tau \), arXiv:1608.06391 [INSPIRE].

  85. K. De Bruyn (LHCb Collaboration), Tests of Lepton Universality at LHCb, talk at TAU2016, LHCb-CONF-2016-011, http://indico.ihep.ac.cn/event/5221/session/12/contribution/69/material/slides/0.pdf.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhubanjyoti Bhattacharya.

Additional information

ArXiv ePrint: 1609.09078

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, B., Datta, A., Guévin, JP. et al. Simultaneous explanation of the R K and \( {R}_{D^{\left(*\right)}} \) puzzles: a model analysis. J. High Energ. Phys. 2017, 15 (2017). https://doi.org/10.1007/JHEP01(2017)015

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2017)015

Keywords

  • Phenomenological Models