Measurement of θ 13 in Double Chooz using neutron captures on hydrogen with novel background rejection techniques

Abstract

The Double Chooz collaboration presents a measurement of the neutrino mixing angle θ 13 using reactor \( \overline{\nu_{\mathrm{e}}} \) observed via the inverse beta decay reaction in which the neutron is captured on hydrogen. This measurement is based on 462.72 live days data, approximately twice as much data as in the previous such analysis, collected with a detector positioned at an average distance of 1050 m from two reactor cores. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties. Accidental coincidences, the dominant background in this analysis, are suppressed by more than an order of magnitude with respect to our previous publication by a multi-variate analysis. These improvements demonstrate the capability of precise measurement of reactor \( \overline{\nu_{\mathrm{e}}} \) without gadolinium loading. Spectral distortions from the \( \overline{\nu_{\mathrm{e}}} \) reactor flux predictions previously reported with the neutron capture on gadolinium events are confirmed in the independent data sample presented here. A value of sin2 2θ 13 = 0.095 + 0.038− 0.039 (stat+syst) is obtained from a fit to the observed event rate as a function of the reactor power, a method insensitive to the energy spectrum shape. A simultaneous fit of the hydrogen capture events and of the gadolinium capture events yields a measurement of sin2 2θ 13 = 0.088 ± 0.033(stat+syst).

A preprint version of the article is available at ArXiv.

References

  1. [1]

    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  2. [2]

    MINOS collaboration, P. Adamson et al., Electron neutrino and antineutrino appearance in the full MINOS data sample, Phys. Rev. Lett. 110 (2013) 171801 [arXiv:1301.4581] [INSPIRE].

  3. [3]

    T2K collaboration, K. Abe et al., Observation of Electron Neutrino Appearance in a Muon Neutrino Beam, Phys. Rev. Lett. 112 (2014) 061802 [arXiv:1311.4750] [INSPIRE].

  4. [4]

    Double CHOOZ collaboration, Y. Abe et al., Improved measurements of the neutrino mixing angle θ 13 with the Double CHOOZ detector, JHEP 10 (2014) 086 [Erratum ibid. 1502 (2015)074] [arXiv:1406.7763] [INSPIRE].

  5. [5]

    Double CHOOZ collaboration, Y. Abe et al., First Measurement of θ 13 from Delayed Neutron Capture on Hydrogen in the Double CHOOZ Experiment, Phys. Lett. B 723 (2013) 66 [arXiv:1301.2948] [INSPIRE].

  6. [6]

    Double CHOOZ collaboration, Y. Abe et al., Background-independent measurement of θ 13 in Double CHOOZ, Phys. Lett. B 735 (2014) 51 [arXiv:1401.5981] [INSPIRE].

  7. [7]

    Daya Bay collaboration, F.P. An et al., Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay, Phys. Rev. Lett. 112 (2014) 061801 [arXiv:1310.6732] [INSPIRE].

  8. [8]

    RENO collaboration, J.K. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

  9. [9]

    Daya Bay collaboration, F.P. An et al., Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay, arXiv:1508.04233 [INSPIRE].

  10. [10]

    RENO collaboration, S.-H. Seo, New Results from RENO and The 5 MeV Excess, AIP Conf. Proc. 1666 (2015) 080002 [arXiv:1410.7987] [INSPIRE].

  11. [11]

    Y. Abe et al., The Waveform Digitiser of the Double CHOOZ Experiment: Performance and Quantisation Effects on PhotoMultiplier Tube Signals, 2013 JINST 8 P08015 [arXiv:1307.4917] [INSPIRE].

  12. [12]

    J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270 [INSPIRE].

    Article  ADS  Google Scholar 

  13. [13]

    GEANT4 collaboration, S. Agostinelli et al., GEANT4: A simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

  14. [14]

    K. Schreckenbach, G. Colvin, W. Gelletly and F. Von Feilitzsch, Determination of the anti-neutrino spectrum from 235 U thermal neutron fission products up to 9.5 MeV, Phys. Lett. B 160 (1985) 325 [INSPIRE].

    Article  ADS  Google Scholar 

  15. [15]

    F. Von Feilitzsch, A.A. Hahn and K. Schreckenbach, Experimental beta spectra from 239 Pu and 235 U thermal neutron fission products and their correlated anti-neutrinos spectra, Phys. Lett. B 118 (1982) 162 [INSPIRE].

    Article  ADS  Google Scholar 

  16. [16]

    A.A. Hahn, K. Schreckenbach, G. Colvin, B. Krusche, W. Gelletly and F. Von Feilitzsch, Anti-neutrino Spectra From 241 Pu and 239 Pu Thermal Neutron Fission Products, Phys. Lett. B 218 (1989) 365 [INSPIRE].

    Article  ADS  Google Scholar 

  17. [17]

    N. Haag et al., Experimental Determination of the Antineutrino Spectrum of the Fission Products of 238 U, Phys. Rev. Lett. 112 (2014) 122501 [arXiv:1312.5601] [INSPIRE].

    Article  ADS  Google Scholar 

  18. [18]

    O. Meplan et al., MURE: MCNP utility for reactor evolution — description of the methods, first applications and results, in ENC 2005: European Nuclear Conference. Nuclear power for the XXIst century: from basic research to high-tech industry, Versailles France, 14-18 December 2005.

  19. [19]

    NEA-1845/01, documentation for MURE (2009).

  20. [20]

    C.L. Jones et al., Reactor Simulation for Antineutrino Experiments using DRAGON and MURE, Phys. Rev. D 86 (2012) 012001 [arXiv:1109.5379] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    Y. Declais et al., Study of reactor anti-neutrino interaction with proton at Bugey nuclear power plant, Phys. Lett. B 338 (1994) 383 [INSPIRE].

    Article  ADS  Google Scholar 

  22. [22]

    A. Hoecker et al., TMVA - Toolkit for Multivariate Data Analysis, PoS (ACAT) 040 [physics/0703039].

  23. [23]

    Double CHOOZ collaboration, Y. Abe et al., Ortho-positronium observation in the Double CHOOZ Experiment, JHEP 10 (2014) 32 [arXiv:1407.6913] [INSPIRE].

  24. [24]

    KamLAND collaboration, S. Abe et al., Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND, Phys. Rev. C 81 (2010) 025807 [arXiv:0907.0066] [INSPIRE].

  25. [25]

    Double CHOOZ collaboration, Y. Abe et al., Direct Measurement of Backgrounds using Reactor-Off Data in Double CHOOZ, Phys. Rev. D 87 (2013) 011102 [arXiv:1210.3748] [INSPIRE].

  26. [26]

    TRIPOLI-4 version 8.1, 3D general purpose continuous energy Monte Carlo transport code, NEA-1716/07, http://www.oecd-nea.org/tools/abstract/detail/nea-1716, (2013).

  27. [27]

    MINOS collaboration, P. Adamson et al., Combined analysis of ν μ disappearance and ν μ → ν e appearance in MINOS using accelerator and atmospheric neutrinos, Phys. Rev. Lett. 112 (2014)191801 [arXiv:1403.0867] [INSPIRE].

  28. [28]

    G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo and A.M. Rotunno, Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    T2K collaboration, K. Abe et al., Precise Measurement of the Neutrino Mixing Parameter θ 23 from Muon Neutrino Disappearance in an Off-Axis Beam, Phys. Rev. Lett. 112 (2014) 181801 [arXiv:1403.1532] [INSPIRE].

  30. [30]

    CHOOZ collaboration, M. Apollonio et al., Limits on neutrino oscillations from the CHOOZ experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to M. Ishitsuka.

Additional information

ArXiv ePrint: 1510.08937

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

The Double Chooz collaboration., Abe, Y., Appel, S. et al. Measurement of θ 13 in Double Chooz using neutron captures on hydrogen with novel background rejection techniques. J. High Energ. Phys. 2016, 163 (2016). https://doi.org/10.1007/JHEP01(2016)163

Download citation

Keywords

  • Oscillation
  • Electroweak interaction
  • Neutrino Detectors and Telescopes
  • Flavor physics