Skip to main content

Geometric compatibility of IceCube TeV-PeV neutrino excess and its galactic dark matter origin

A preprint version of the article is available at arXiv.


We perform a geometric analysis for the sky map of the IceCube TeV-PeV neutrino excess and test its compatibility with the sky map of decaying dark matter signals in our galaxy. We have found that a galactic decaying dark matter component in general improve the goodness of the fit of our model, although the pure isotropic hypothesis has a better fit than the pure dark matter one. We also consider several representative decaying dark matter, which can provide a good fit to the observed spectrum at IceCube with a dark matter lifetime of around 12 orders of magnitude longer than the age of the universe.


  1. F. Halzen and D. Hooper, The Indirect Search for Dark Matter with IceCube, New J. Phys. 11 (2009) 105019 [arXiv:0910.4513] [INSPIRE].

    ADS  Article  Google Scholar 

  2. Super-Kamiokande collaboration, T. Tanaka et al., An Indirect Search for WIMPs in the Sun using 3109.6 days of upward-going muons in Super-Kamiokande, Astrophys. J. 742 (2011) 78 [arXiv:1108.3384] [INSPIRE].

  3. IceCube collaboration, M.G. Aartsen et al., Search for dark matter annihilations in the Sun with the 79-string IceCube detector, Phys. Rev. Lett. 110 (2013) 131302 [arXiv:1212.4097] [INSPIRE].

  4. ANTARES collaboration, S. Adrian-Martinez et al., First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope, JCAP 11 (2013) 032 [arXiv:1302.6516] [INSPIRE].

  5. IceCube collaboration, M.G. Aartsen et al., Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector, Science 342 (2013) 1242856 [arXiv:1311.5238] [INSPIRE].

  6. IceCube collaboration, M.G. Aartsen et al., Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data, Phys. Rev. Lett. 113 (2014) 101101 [arXiv:1405.5303] [INSPIRE].

  7. IceCube collaboration, M.G. Aartsen et al., The IceCube Neutrino Observatory — Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors, arXiv:1510.05223 [INSPIRE].

  8. M. Honda, T. Kajita, K. Kasahara, S. Midorikawa and T. Sanuki, Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data, Phys. Rev. D 75 (2007) 043006 [astro-ph/0611418] [INSPIRE].

  9. R. Enberg, M.H. Reno and I. Sarcevic, Prompt neutrino fluxes from atmospheric charm, Phys. Rev. D 78 (2008) 043005 [arXiv:0806.0418] [INSPIRE].

    ADS  Google Scholar 

  10. P. Lipari, Establishing the astrophysical origin of a signal in a neutrino telescope, arXiv:1308.2086 [INSPIRE].

  11. R. Laha, J.F. Beacom, B. Dasgupta, S. Horiuchi and K. Murase, Demystifying the PeV Cascades in IceCube: Less (Energy) is More (Events), Phys. Rev. D 88 (2013) 043009 [arXiv:1306.2309] [INSPIRE].

    ADS  Google Scholar 

  12. C.-Y. Chen, P.S. Bhupal Dev and A. Soni, Standard model explanation of the ultrahigh energy neutrino events at IceCube, Phys. Rev. D 89 (2014) 033012 [arXiv:1309.1764] [INSPIRE].

    ADS  Google Scholar 

  13. IceCube collaboration, M.G. Aartsen et al., First observation of PeV-energy neutrinos with IceCube, Phys. Rev. Lett. 111 (2013) 021103 [arXiv:1304.5356] [INSPIRE].

  14. K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of Dark Matter Particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].

    ADS  Article  Google Scholar 

  15. L. Hui, Unitarity bounds and the cuspy halo problem, Phys. Rev. Lett. 86 (2001) 3467 [astro-ph/0102349] [INSPIRE].

  16. D.J.H. Chung, E.W. Kolb and A. Riotto, Superheavy dark matter, Phys. Rev. D 59 (1999) 023501 [hep-ph/9802238] [INSPIRE].

  17. D.J.H. Chung, E.W. Kolb and A. Riotto, Nonthermal supermassive dark matter, Phys. Rev. Lett. 81 (1998) 4048 [hep-ph/9805473] [INSPIRE].

  18. L. Covi, M. Grefe, A. Ibarra and D. Tran, Neutrino Signals from Dark Matter Decay, JCAP 04 (2010) 017 [arXiv:0912.3521] [INSPIRE].

    ADS  Article  Google Scholar 

  19. B. Feldstein, A. Kusenko, S. Matsumoto and T.T. Yanagida, Neutrinos at IceCube from Heavy Decaying Dark Matter, Phys. Rev. D 88 (2013) 015004 [arXiv:1303.7320] [INSPIRE].

    ADS  Google Scholar 

  20. A. Esmaili and P.D. Serpico, Are IceCube neutrinos unveiling PeV-scale decaying dark matter?, JCAP 11 (2013) 054 [arXiv:1308.1105] [INSPIRE].

    ADS  Article  Google Scholar 

  21. L.A. Anchordoqui et al., IceCube neutrinos, decaying dark matter and the Hubble constant, Phys. Rev. D 92 (2015) 061301 [arXiv:1506.08788] [INSPIRE].

    ADS  Google Scholar 

  22. C.S. Fong, H. Minakata, B. Panes and R.Z. Funchal, Possible Interpretations of IceCube High-Energy Neutrino Events, JHEP 02 (2015) 189 [arXiv:1411.5318] [INSPIRE].

    ADS  Article  Google Scholar 

  23. I. Cholis and D. Hooper, On The Origin of IceCube’s PeV Neutrinos, JCAP 06 (2013) 030 [arXiv:1211.1974] [INSPIRE].

    ADS  Article  Google Scholar 

  24. L.A. Anchordoqui, H. Goldberg, M.H. Lynch, A.V. Olinto, T.C. Paul and T.J. Weiler, Pinning down the cosmic ray source mechanism with new IceCube data, Phys. Rev. D 89 (2014) 083003 [arXiv:1306.5021] [INSPIRE].

    ADS  Google Scholar 

  25. W. Winter, Photohadronic Origin of the TeV-PeV Neutrinos Observed in IceCube, Phys. Rev. D 88 (2013) 083007 [arXiv:1307.2793] [INSPIRE].

    ADS  Google Scholar 

  26. S. Razzaque, The Galactic Center Origin of a Subset of IceCube Neutrino Events, Phys. Rev. D 88 (2013) 081302 [arXiv:1309.2756] [INSPIRE].

    ADS  Google Scholar 

  27. M. Ahlers and K. Murase, Probing the Galactic Origin of the IceCube Excess with Gamma-Rays, Phys. Rev. D 90 (2014) 023010 [arXiv:1309.4077] [INSPIRE].

    ADS  Google Scholar 

  28. M.C. Gonzalez-Garcia, F. Halzen and V. Niro, Reevaluation of the Prospect of Observing Neutrinos from Galactic Sources in the Light of Recent Results in Gamma Ray and Neutrino Astronomy, Astropart. Phys. 57-58 (2014) 39 [arXiv:1310.7194] [INSPIRE].

    Article  Google Scholar 

  29. D.B. Fox, K. Kashiyama and P. Mészarós, Sub-PeV Neutrinos from TeV Unidentified Sources in the Galaxy, Astrophys. J. 774 (2013) 74 [arXiv:1305.6606] [INSPIRE].

    ADS  Article  Google Scholar 

  30. A. Neronov, D.V. Semikoz and C. Tchernin, PeV neutrinos from interactions of cosmic rays with the interstellar medium in the Galaxy, Phys. Rev. D 89 (2014) 103002 [arXiv:1307.2158] [INSPIRE].

    ADS  Google Scholar 

  31. O.E. Kalashev, A. Kusenko and W. Essey, PeV neutrinos from intergalactic interactions of cosmic rays emitted by active galactic nuclei, Phys. Rev. Lett. 111 (2013) 041103 [arXiv:1303.0300] [INSPIRE].

    ADS  Article  Google Scholar 

  32. F.W. Stecker, PeV neutrinos observed by IceCube from cores of active galactic nuclei, Phys. Rev. D 88 (2013) 047301 [arXiv:1305.7404] [INSPIRE].

    ADS  Google Scholar 

  33. K. Murase and K. Ioka, TeV-PeV Neutrinos from Low-Power Gamma-Ray Burst Jets inside Stars, Phys. Rev. Lett. 111 (2013) 121102 [arXiv:1306.2274] [INSPIRE].

    ADS  Article  Google Scholar 

  34. S. Razzaque, Long-lived PeV-EeV neutrinos from gamma-ray burst blastwave, Phys. Rev. D 88 (2013) 103003 [arXiv:1307.7596] [INSPIRE].

    ADS  Google Scholar 

  35. K. Murase, M. Ahlers and B.C. Lacki, Testing the Hadronuclear Origin of PeV Neutrinos Observed with IceCube, Phys. Rev. D 88 (2013) 121301 [arXiv:1306.3417] [INSPIRE].

    ADS  Google Scholar 

  36. R.-Y. Liu, X.-Y. Wang, S. Inoue, R. Crocker and F. Aharonian, Diffuse PeV neutrinos from EeV cosmic ray sources: Semirelativistic hypernova remnants in star-forming galaxies, Phys. Rev. D 89 (2014) 083004 [arXiv:1310.1263] [INSPIRE].

    ADS  Google Scholar 

  37. V. Barger and W.-Y. Keung, Superheavy Particle Origin of IceCube PeV Neutrino Events, Phys. Lett. B 727 (2013) 190 [arXiv:1305.6907] [INSPIRE].

    ADS  Article  Google Scholar 

  38. A.W. Graham, D. Merritt, B. Moore, J. Diemand and B. Terzic, Empirical Models for Dark Matter Halos. II. Inner profile slopes, dynamical profiles and ρ/σ 3, Astron. J. 132 (2006) 2701 [astro-ph/0608613] [INSPIRE].

  39. T. Neunhoffer, Estimating the angular resolution of tracks in neutrino telescopes based on a likelihood analysis, Astropart. Phys. 25 (2006) 220 [astro-ph/0403367] [INSPIRE].

  40. J.A. Peacock, Two-dimensional goodness-of-fit testing in astronomy, Mon. Not. Roy. Astron. Soc. 202 (1983) 615.

    ADS  Article  Google Scholar 

  41. J. Braun, J. Dumm, F. De Palma, C. Finley, A. Karle and T. Montaruli, Methods for point source analysis in high energy neutrino telescopes, Astropart. Phys. 29 (2008) 299 [arXiv:0801.1604] [INSPIRE].

    ADS  Article  Google Scholar 

  42. M. Ahlers, Y. Bai, V. Barger and R. Lu, Galactic TeV-PeV Neutrinos, arXiv:1505.03156 [INSPIRE].

  43. IceCube collaboration, M.G. Aartsen et al., IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica, arXiv:1412.5106 [INSPIRE].

  44. T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

  45. ANTARES collaboration, S. Adrian-Martinez et al., Search for Cosmic Neutrino Point Sources with Four Year Data of the ANTARES Telescope, Astrophys. J. 760 (2012) 53 [arXiv:1207.3105] [INSPIRE].

  46. Fermi-LAT collaboration, M. Ackermann et al., Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements, Astrophys. J. 761 (2012) 91 [arXiv:1205.6474] [INSPIRE].

  47. Fermi-LAT collaboration, A.A. Abdo et al., Observations of Milky Way Dwarf Spheroidal galaxies with the Fermi-LAT detector and constraints on Dark Matter models, Astrophys. J. 712 (2010) 147 [arXiv:1001.4531] [INSPIRE].

  48. PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE].

  49. PAMELA collaboration, O. Adriani et al., PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy, Phys. Rev. Lett. 105 (2010) 121101 [arXiv:1007.0821] [INSPIRE].

  50. AMS collaboration, M. Aguilar et al., First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-350 GeV, Phys. Rev. Lett. 110 (2013) 141102 [INSPIRE].

  51. I.F.M. Albuquerque and L. Baudis, Direct detection constraints on superheavy dark matter, Phys. Rev. Lett. 90 (2003) 221301 [Erratum ibid. 91 (2003) 229903] [astro-ph/0301188] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to Jordi Salvado.

Additional information

ArXiv ePrint: 1311.5864

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Lu, R. & Salvado, J. Geometric compatibility of IceCube TeV-PeV neutrino excess and its galactic dark matter origin. J. High Energ. Phys. 2016, 161 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • Neutrino Detectors and Telescopes