Skip to main content

Advertisement

SpringerLink
Black holes turn white fast, otherwise stay black: no half measures
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 26 January 2016

Black holes turn white fast, otherwise stay black: no half measures

  • Carlos Barceló1,
  • Raúl Carballo-Rubio1,2 &
  • Luis J. Garay3,4 

Journal of High Energy Physics volume 2016, Article number: 157 (2016) Cite this article

  • 483 Accesses

  • 36 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Recently, various authors have proposed that the dominant ultraviolet effect in the gravitational collapse of massive stars to black holes is the transition between a black-hole geometry and a white-hole geometry, though their proposals are radically different in terms of their physical interpretation and characteristic time scales [1, 2]. Several decades ago, it was shown by Eardley that white holes are highly unstable to the accretion of small amounts of matter, being rapidly turned into black holes [3]. Studying the crossing of null shells on geometries describing the black-hole to white-hole transition, we obtain the conditions for the instability to develop in terms of the parameters of these geometries. We conclude that transitions with long characteristic time scales are pathologically unstable: occasional perturbations away from the perfect vacuum around these compact objects, even if being imperceptibly small, suffocate the white-hole explosion. On the other hand, geometries with short characteristic time scales are shown to be robust against perturbations, so that the corresponding processes could take place in real astrophysical scenarios. This motivates a conjecture about the transition amplitudes of different decay channels for black holes in a suitable ultraviolet completion of general relativity.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. C. Barceló, R. Carballo-Rubio and L.J. Garay, Mutiny at the white-hole district, Int. J. Mod. Phys. D 23 (2014) 1442022 [arXiv:1407.1391] [INSPIRE].

    Article  ADS  Google Scholar 

  2. H.M. Haggard and C. Rovelli, Quantum-gravity effects outside the horizon spark black to white hole tunneling, Phys. Rev. D 92 (2015) 104020 [arXiv:1407.0989] [INSPIRE].

    ADS  Google Scholar 

  3. D.M. Eardley, Death of white holes in the early universe, Phys. Rev. Lett. 33 (1974) 442 [INSPIRE].

    Article  ADS  Google Scholar 

  4. C. Barceló, R. Carballo-Rubio and L.J. Garay, Where does the physics of extreme gravitational collapse reside?, arXiv:1510.04957 [INSPIRE].

  5. P. Hajicek and C. Kiefer, Singularity avoidance by collapsing shells in quantum gravity, Int. J. Mod. Phys. D 10 (2001) 775 [gr-qc/0107102] [INSPIRE].

  6. P. Hajicek, Quantum theory of gravitational collapse: lecture notes on quantum conchology, Lect. Notes Phys. 631 (2003) 255, [gr-qc/0204049].

  7. M. Ambrus and P. Hajicek, Quantum superposition principle and gravitational collapse: scattering times for spherical shells, Phys. Rev. D 72 (2005) 064025 [gr-qc/0507017] [INSPIRE].

  8. M. Ambrus, How long does it take until a quantum system reemerges after a gravitational collapse?, Ph.D. thesis, Bern University, Bern, Switzerland (2004).

  9. C. Barcelo, L.J. Garay and G. Jannes, Quantum non-gravity and stellar collapse, Found. Phys. 41 (2011) 1532 [arXiv:1002.4651] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. C. Barcelo, R. Carballo-Rubio, L.J. Garay and G. Jannes, The lifetime problem of evaporating black holes: mutiny or resignation, Class. Quant. Grav. 32 (2015) 035012 [arXiv:1409.1501] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Visser, C. Barcelo, S. Liberati and S. Sonego, Small, dark and heavy: But is it a black hole?, arXiv:0902.0346 [INSPIRE].

  12. S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2011).

  13. C. Barrabès, P.R. Brady and E. Poisson, Death of white holes, Phys. Rev. D 47 (1993) 2383.

    ADS  Google Scholar 

  14. A. Ori and E. Poisson, Death of cosmological white holes, Phys. Rev. D 50 (1994) 6150.

    ADS  Google Scholar 

  15. V.P. Frolov and Í.D. Novikov, Black hole physics: basic concepts and new developments, Fundamental Theories of Physics. Springer (1998).

  16. S.K. Blau and A.H. Guth, The stability of the white hole horizon, essay written for the Gravity Research Foundation 1989 Awards for Essays on Gravitation (1989).

  17. S.K. Blau, ’t Hooft Dray geometries and the death of white holes, Phys. Rev. D 39 (1989) 2901 [INSPIRE].

  18. D. Núñez, H.P. de Oliveira and J. Salim, Dynamics and collision of massive shells in curved backgrounds, Class. Quant. Grav. 10 (1993) 1117 [gr-qc/9302003] [INSPIRE].

  19. T. Dray and G. ’t Hooft, The effect of spherical shells of matter on the Schwarzschild black hole, Commun. Math. Phys. 99 (1985) 613 [INSPIRE].

  20. I. H. Redmount, Blue-sheet instability of Schwarzschild wormholes, Prog. Theor. Phys. 73 (1985) 1401.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ya. B. Zeldovich, I.D. Novikov and A.A. Starobinsky, Quantum effects in white holes, Zh. Eksp. Teor. Fiz. 66 (1974) 1897 [INSPIRE].

  22. C. Barrabes, W. Israel and E. Poisson, Collision of light-like shells and mass inflation in rotating black holes, Class. Quant. Grav. 7 (1990) L273.

    Article  ADS  MathSciNet  Google Scholar 

  23. E. Poisson and W. Israel, Internal structure of black holes, Phys. Rev. D 41 (1990) 1796 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. A. Ori, Inner structure of a charged black hole: an exact mass-inflation solution, Phys. Rev. Lett. 67 (1991) 789 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. A.J.S. Hamilton and P.P. Avelino, The physics of the relativistic counter-streaming instability that drives mass inflation inside black holes, Phys. Rept. 495 (2010) 1 [arXiv:0811.1926] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. E.G. Brown, R.B. Mann and L. Modesto, Mass inflation in the loop black hole, Phys. Rev. D 84 (2011) 104041 [arXiv:1104.3126] [INSPIRE].

    ADS  Google Scholar 

  27. D. Marolf and A. Ori, Outgoing gravitational shock-wave at the inner horizon: the late-time limit of black hole interiors, Phys. Rev. D 86 (2012) 124026 [arXiv:1109.5139] [INSPIRE].

    ADS  Google Scholar 

  28. J. Hartle and T. Hertog, Quantum transitions between classical histories, Phys. Rev. D 92 (2015) 063509 [arXiv:1502.06770] [INSPIRE].

    ADS  Google Scholar 

  29. S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].

  30. S.W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. C. Rovelli and F. Vidotto, Planck stars, Int. J. Mod. Phys. D 23 (2014) 1442026 [arXiv:1401.6562] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Barrau, C. Rovelli and F. Vidotto, Fast radio bursts and white hole signals, Phys. Rev. D 90 (2014) 127503 [arXiv:1409.4031] [INSPIRE].

    ADS  Google Scholar 

  33. A. Barrau, B. Bolliet, F. Vidotto and C. Weimer, Phenomenology of bouncing black holes in quantum gravity: a closer look, arXiv:1507.05424 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008, Granada, Spain

    Carlos Barceló & Raúl Carballo-Rubio

  2. Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071, Granada, Spain

    Raúl Carballo-Rubio

  3. Departamento de Física Teórica II, Universidad Complutense de Madrid, 28040, Madrid, Spain

    Luis J. Garay

  4. Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, 28006, Madrid, Spain

    Luis J. Garay

Authors
  1. Carlos Barceló
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Raúl Carballo-Rubio
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Luis J. Garay
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Raúl Carballo-Rubio.

Additional information

ArXiv ePrint: 1511.00633

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barceló, C., Carballo-Rubio, R. & Garay, L.J. Black holes turn white fast, otherwise stay black: no half measures. J. High Energ. Phys. 2016, 157 (2016). https://doi.org/10.1007/JHEP01(2016)157

Download citation

  • Received: 03 November 2015

  • Accepted: 12 January 2016

  • Published: 26 January 2016

  • DOI: https://doi.org/10.1007/JHEP01(2016)157

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Black Holes
  • Models of Quantum Gravity
  • Spacetime Singularities
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.