Strong-coupling scales and the graph structure of multi-gravity theories

Abstract

In this paper we consider how the strong-coupling scale, or perturbative cutoff, in a multi-gravity theory depends upon the presence and structure of interactions between the different fields. This can elegantly be rephrased in terms of the size and structure of the ‘theory graph’ which depicts the interactions in a given theory. We show that the question can be answered in terms of the properties of various graph-theoretical matrices, affording an efficient way to estimate and place bounds on the strong-coupling scale of a given theory. In light of this we also consider the problem of relating a given theory graph to a discretised higher dimensional theory, à la dimensional deconstruction.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    N. Boulanger, T. Damour, L. Gualtieri and M. Henneaux, Inconsistency of interacting, multigraviton theories, Nucl. Phys. B 597 (2001) 127 [hep-th/0007220] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    K. Hinterbichler, Theoretical aspects of massive gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    C. de Rham, Massive gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].

    Google Scholar 

  4. [4]

    D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    S.F. Hassan and R.A. Rosen, On non-linear actions for massive gravity, JHEP 07 (2011) 009 [arXiv:1103.6055] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    S.F. Hassan and R.A. Rosen, Resolving the ghost problem in non-linear massive gravity, Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    S.F. Hassan, R.A. Rosen and A. Schmidt-May, Ghost-free massive gravity with a general reference metric, JHEP 02 (2012) 026 [arXiv:1109.3230] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    S.F. Hassan and R.A. Rosen, Bimetric gravity from ghost-free massive gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    S.F. Hassan and R.A. Rosen, Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity, JHEP 04 (2012) 123 [arXiv:1111.2070] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    K. Hinterbichler and R.A. Rosen, Interacting spin-2 fields, JHEP 07 (2012) 047 [arXiv:1203.5783] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    U. Aydemir, M.M. Anber and J.F. Donoghue, Self-healing of unitarity in effective field theories and the onset of new physics, Phys. Rev. D 86 (2012) 014025 [arXiv:1203.5153] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    C. Burrage, N. Kaloper and A. Padilla, Strong coupling and bounds on the spin-2 mass in massive gravity, Phys. Rev. Lett. 111 (2013) 021802 [arXiv:1211.6001] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    C. de Rham, A. Matas and A.J. Tolley, Deconstructing dimensions and massive gravity, Class. Quant. Grav. 31 (2014) 025004 [arXiv:1308.4136] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    C. de Rham, G. Gabadadze and A.J. Tolley, Ghost free massive gravity in the Stückelberg language, Phys. Lett. B 711 (2012) 190 [arXiv:1107.3820] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    M. Fasiello and A.J. Tolley, Cosmological stability bound in massive gravity and bigravity, JCAP 12 (2013) 002 [arXiv:1308.1647] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    J. Noller, J.H.C. Scargill and P.G. Ferreira, Interacting spin-2 fields in the Stückelberg picture, JCAP 02 (2014) 007 [arXiv:1311.7009] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    C. de Rham, M. Fasiello and A.J. Tolley, Galileon duality, Phys. Lett. B 733 (2014) 46 [arXiv:1308.2702] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    J. Noller and J.H.C. Scargill, The decoupling limit of multi-gravity: multi-Galileons, dualities and more, JHEP 05 (2015) 034 [arXiv:1503.02700] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys. 305 (2003) 96 [hep-th/0210184] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    T. Hanada, K. Kobayashi, K. Shinoda and K. Shiraishi, Classical and quantum cosmology of multigravity, Class. Quant. Grav. 27 (2010) 225010 [arXiv:1004.5435] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    J.H.C. Scargill, J. Noller and P.G. Ferreira, Cycles of interactions in multi-gravity theories, JHEP 12 (2014) 160 [arXiv:1410.7774] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    C. Yan, Properties of spectra of graphs and line graphs, Appl. Math. J. Chin. Univ. B 17 (2002) 371.

    Article  Google Scholar 

  26. [26]

    M. Doob, An interrelation between line graphs, eigenvalues, and matroids, J. Combinat. Theor. B 15 (1973) 40.

    MathSciNet  Article  Google Scholar 

  27. [27]

    R. Brualdi, The mutually beneficial relationship of graphs and matrices, in Regional conference series in mathematics, American Mathematical Soc., U.S.A. (2011).

  28. [28]

    N. Arkani-Hamed and M.D. Schwartz, Discrete gravitational dimensions, Phys. Rev. D 69 (2004) 104001 [hep-th/0302110] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  29. [29]

    M.D. Schwartz, Constructing gravitational dimensions, Phys. Rev. D 68 (2003) 024029 [hep-th/0303114] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    C. Deffayet and J. Mourad, Multigravity from a discrete extra dimension, Phys. Lett. B 589 (2004) 48 [hep-th/0311124] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    N. Kan and K. Shiraishi, Multigraviton theory: a latticized dimension and the cosmological constant, Class. Quant. Grav. 20 (2003) 4965 [gr-qc/0212113] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    R. Grone and R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math. 7 (1994) 221.

    MathSciNet  Article  MATH  Google Scholar 

  33. [33]

    D. Stevanović, Bounding the largest eigenvalue of trees in terms of the largest vertex degree, Lin. Alg. Appl. 360 (2003) 35.

    Article  MATH  Google Scholar 

  34. [34]

    C. de Rham, L. Heisenberg and R.H. Ribeiro, On couplings to matter in massive (bi-)gravity, Class. Quant. Grav. 32 (2015) 035022 [arXiv:1408.1678] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    J. Noller and S. Melville, The coupling to matter in massive, bi- and multi-gravity, JCAP 01 (2015) 003 [arXiv:1408.5131] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    S. Melville and J. Noller, Generalised matter couplings in massive bigravity, arXiv:1511.01485 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James H. C. Scargill.

Additional information

ArXiv ePrint: 1511.02877

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scargill, J.H.C., Noller, J. Strong-coupling scales and the graph structure of multi-gravity theories. J. High Energ. Phys. 2016, 29 (2016). https://doi.org/10.1007/JHEP01(2016)029

Download citation

Keywords

  • Classical Theories of Gravity
  • Field Theories in Higher Dimensions