Instantons on conical half-flat 6-manifolds

  • Severin Bunk
  • Olaf LechtenfeldEmail author
  • Alexander D. Popov
  • Marcus Sperling
Open Access
Regular Article - Theoretical Physics


We present a general procedure to construct 6-dimensional manifolds with SU(3)-structure from SU(2)-structure 5-manifolds. We thereby obtain half-flat cylinders and sine-cones over 5-manifolds with Sasaki-Einstein SU(2)-structure. They are nearly Kähler in the special case of sine-cones over Sasaki-Einstein 5-manifolds. Both half-flat and nearly Kähler 6-manifolds are prominent in flux compactifications of string theory. Subsequently, we investigate instanton equations for connections on vector bundles over these half-flat manifolds. A suitable ansatz for gauge fields on these 6-manifolds reduces the instanton equation to a set of matrix equations. We finally present some of its solutions and discuss the instanton configurations obtained this way.


Solitons Monopoles and Instantons Flux compactifications Differential and Algebraic Geometry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R. Rajaraman, Solitons and instantons. An introduction to solitons and instantons in quantum field theory, North-Holland, Amsterdam The Netherlands (1982).Google Scholar
  2. [2]
    N. Manton and P. Sutcliffe, Topological solitons, Cambridge University Press, Cambridge U.K. (2004).CrossRefzbMATHGoogle Scholar
  3. [3]
    E. J. Weinberg, Classical solutions in quantum field theory, Cambridge University Press, Cambridge U.K. (2012).CrossRefzbMATHGoogle Scholar
  4. [4]
    J. Polchinski, String theory. Volume 1: an introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998).CrossRefGoogle Scholar
  5. [5]
    J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).CrossRefGoogle Scholar
  6. [6]
    K. Becker, M. Becker and J.H. Schwarz, String theory and M-theory: a modern introduction, Cambridge University Press, Cambridge U.K. (2007).Google Scholar
  7. [7]
    R. Harvey and H.B. Lawson Jr., Calibrated geometries, Acta Math. 148 (1982) 47.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Louis and A. Micu, Heterotic string theory with background fluxes, Nucl. Phys. B 626 (2002) 26 [hep-th/0110187] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    J. Louis and A. Micu, Heterotic-type IIA duality with fluxes, JHEP 03 (2007) 026 [hep-th/0608171] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    G. Lopes Cardoso, G. Curio, G. Dall’Agata and D. Lüst, BPS action and superpotential for heterotic string compactifications with fluxes, JHEP 10 (2003) 004 [hep-th/0306088] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A.R. Frey and M. Lippert, AdS strings with torsion: non-complex heterotic compactifications, Phys. Rev. D 72 (2005) 126001 [hep-th/0507202] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    P. Manousselis, N. Prezas and G. Zoupanos, Supersymmetric compactifications of heterotic strings with fluxes and condensates, Nucl. Phys. B 739 (2006) 85 [hep-th/0511122] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    K. Becker, M. Becker, K. Dasgupta and P.S. Green, Compactifications of heterotic theory on nonKähler complex manifolds. 1, JHEP 04 (2003) 007 [hep-th/0301161] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    K. Becker, M. Becker, P.S. Green, K. Dasgupta and E. Sharpe, Compactifications of heterotic strings on non-Kähler complex manifolds. 2, Nucl. Phys. B 678 (2004) 19 [hep-th/0310058] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    M. Fernandez, S. Ivanov, L. Ugarte and R. Villacampa, Non-Kähler heterotic string compactifications with non-zero fluxes and constant dilaton, Commun. Math. Phys. 288 (2009) 677 [arXiv:0804.1648] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    G. Papadopoulos, Heterotic supersymmetric backgrounds with compact holonomy revisited, Class. Quant. Grav. 27 (2010) 125008 [arXiv:0909.2870] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Held, D. Lüst, F. Marchesano and L. Martucci, DWSB in heterotic flux compactifications, JHEP 06 (2010) 090 [arXiv:1004.0867] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    O. Lechtenfeld, C. Nölle and A.D. Popov, Heterotic compactifications on nearly Kähler manifolds, JHEP 09 (2010) 074 [arXiv:1007.0236] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Klaput, A. Lukas and C. Matti, Bundles over nearly-Kähler homogeneous spaces in heterotic string theory, JHEP 09 (2011) 100 [arXiv:1107.3573] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    D. Harland and C. Nölle, Instantons and Killing spinors, JHEP 03 (2012) 082 [arXiv:1109.3552] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    K.-P. Gemmer, A.S. Haupt, O. Lechtenfeld, C. Nölle and A.D. Popov, Heterotic string plus five-brane systems with asymptotic AdS3, Adv. Theor. Math. Phys. 17 (2013) 771 [arXiv:1202.5046] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    C. Hull, Superstring compactifications with torsion and space-time supersymmetry, in 1st Torino Meeting on Superunification and Extra Dimensions, P. Fre and R. D’Auria eds., World Scientific Publishing, Singapore (1986).Google Scholar
  25. [25]
    C.M. Hull, Anomalies, ambiguities and superstrings, Phys. Lett. B 167 (1986) 51 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    C.M. Hull, Compactifications of the heterotic superstring, Phys. Lett. B 178 (1986) 357 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    A. Strominger, Superstrings with torsion, Nucl. Phys. B 274 (1986) 253 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    S. Ivanov, Heterotic supersymmetry, anomaly cancellation and equations of motion, Phys. Lett. B 685 (2010) 190 [arXiv:0908.2927] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S.K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985) 1.CrossRefzbMATHMathSciNetGoogle Scholar
  30. [30]
    S.K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987) 231.CrossRefzbMATHMathSciNetGoogle Scholar
  31. [31]
    K. Uhlenbeck and S.T. Yau, On the existence of hermitian-Yang-Mills connections in stable vector bundles, Commun. Pure Appl. Math. 39 (1986) S257.CrossRefzbMATHMathSciNetGoogle Scholar
  32. [32]
    A. Chatzistavrakidis, O. Lechtenfeld and A.D. Popov, Nearly Kähler heterotic compactifications with fermion condensates, JHEP 04 (2012) 114 [arXiv:1202.1278] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    K.-P. Gemmer and O. Lechtenfeld, Heterotic G 2 -manifold compactifications with fluxes and fermionic condensates, JHEP 11 (2013) 182 [arXiv:1308.1955] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Fernandez, S. Ivanov, V. Muñoz and L. Ugarte, Nearly hypo structures and compact nearly Kähler 6-manifolds with conical singularities, math/0602160 [INSPIRE].
  35. [35]
    K.-P. Gemmer, O. Lechtenfeld, C. Nölle and A.D. Popov, Yang-Mills instantons on cones and sine-cones over nearly Kähler manifolds, JHEP 09 (2011) 103 [arXiv:1108.3951] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    B.S. Acharya, J.M. Figueroa-O’Farrill, C.M. Hull and B.J. Spence, Branes at conical singularities and holography, Adv. Theor. Math. Phys. 2 (1999) 1249 [hep-th/9808014] [INSPIRE].MathSciNetGoogle Scholar
  37. [37]
    P. Koerber, D. Lüst and D. Tsimpis, Type IIA AdS 4 compactifications on cosets, interpolations and domain walls, JHEP 07 (2008) 017 [arXiv:0804.0614] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    C. Nölle, Instantons, five-branes and fractional strings, arXiv:1207.7268 [INSPIRE].
  39. [39]
    E. Corrigan, C. Devchand, D.B. Fairlie and J. Nuyts, First order equations for gauge fields in spaces of dimension greater than four, Nucl. Phys. B 214 (1983) 452 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    M. Mamone Capria and S.M. Salamon, Yang-Mills fields on quaternionic spaces, Nonlinearity 1 (1988) 517.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  41. [41]
    R.R. Carrión, A generalization of the notion of instanton, Diff. Geom. Appl. 8 (1998) 1.CrossRefzbMATHGoogle Scholar
  42. [42]
    L. Baulieu, H. Kanno, and I.M. Singer, Special quantum field theories in eight and other dimensions, Commun. Math. Phys. 194 (1998) 149 [hep-th/9704167] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  43. [43]
    M. Blau and G. Thompson, Euclidean SYM theories by time reduction and special holonomy manifolds, Phys. Lett. B 415 (1997) 242 [hep-th/9706225] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    B.S. Acharya, J.M. Figueroa-O’Farrill, B.J. Spence and M. O’Loughlin, Euclidean D-branes and higher dimensional gauge theory, Nucl. Phys. B 514 (1998) 583 [hep-th/9707118] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    S. Donaldson and R. Thomas, Gauge theory in higher dimensions, in The geometric universe, S.A. Huggett et al. eds. Oxford University Press, Oxford U.K. (1996).Google Scholar
  46. [46]
    S. Donaldson and E. Segal, Gauge theory in higher dimensions, II, in Surveys in differential geometry, N.C. Leung and S.-T. Yau eds., International Press of Boston, Boston U.S.A. (2009), arXiv:0902.3239 [INSPIRE].Google Scholar
  47. [47]
    G. Tian, Gauge theory and calibrated geometry. 1, Annals Math. 151 (2000) 193 [math/0010015] [INSPIRE].CrossRefzbMATHGoogle Scholar
  48. [48]
    D.B. Fairlie and J. Nuyts, Spherically symmetric solutions of gauge theories in eight-dimensions, J. Phys. A 17 (1984) 2867 [INSPIRE].ADSMathSciNetGoogle Scholar
  49. [49]
    S. Fubini and H. Nicolai, The octonionic instanton, Phys. Lett. B 155 (1985) 369 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  50. [50]
    T.A. Ivanova and A.D. Popov, Selfdual Yang-Mills fields in D = 7, 8, octonions and Ward equations, Lett. Math. Phys. 24 (1992) 85 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  51. [51]
    T.A. Ivanova and A.D. Popov, (Anti)selfdual gauge fields in dimension d ≥ 4, Theor. Math. Phys. 94 (1993) 225 [INSPIRE].CrossRefMathSciNetGoogle Scholar
  52. [52]
    M. Günaydin and H. Nicolai, Seven-dimensional octonionic Yang-Mills instanton and its extension to an heterotic string soliton, Phys. Lett. B 351 (1995) 169 [Addendum ibid. B 376 (1996) 329] [hep-th/9502009] [INSPIRE].
  53. [53]
    S. Bunk, T.A. Ivanova, O. Lechtenfeld, A.D. Popov and M. Sperling, Instantons on sine-cones over Sasakian manifolds, Phys. Rev. D 90 (2014) 065028 [arXiv:1407.2948] [INSPIRE].ADSGoogle Scholar
  54. [54]
    J. Sparks, Sasaki-Einstein manifolds, Surveys Diff. Geom. 16 (2011) 265 [arXiv:1004.2461] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  55. [55]
    C.P. Boyer and K. Galicki, Sasakian geometry, Oxford University Press, Oxford U.K. (2008).zbMATHGoogle Scholar
  56. [56]
    D. Harland, T.A. Ivanova, O. Lechtenfeld and A.D. Popov, Yang-Mills flows on nearly Kähler manifolds and G 2 -instantons, Commun. Math. Phys. 300 (2010) 185 [arXiv:0909.2730] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  57. [57]
    D. Conti and S. Salamon, Generalized Killing spinors in dimension 5, Trans. Amer. Math. Soc. 359 (2007) 5319 [math/0508375].CrossRefzbMATHMathSciNetGoogle Scholar
  58. [58]
    F. Müller-Hoissen and R. Stückl, Coset spaces and ten-dimensional unified theories, Class. Quant. Grav. 5 (1988) 27 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    S. Chiossi and S. Salamon, The intrinsic torsion of SU(3) and G 2 structures, J. Diff. Geom. (2002) [math/0202282] [INSPIRE].
  60. [60]
    T. Friedrich and S. Ivanov, Parallel spinors and connections with skew symmetric torsion in string theory, Asian J. Math 6 (2002) 303 [math/0102142] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  61. [61]
    J.-M. Bismut, A local index theorem for non Kähler manifolds, Math. Ann. 284 (1989) 681CrossRefzbMATHMathSciNetGoogle Scholar
  62. [62]
    D. Harland and A.D. Popov, Yang-Mills fields in flux compactifications on homogeneous manifolds with SU(4)-structure, JHEP 02 (2012) 107 [arXiv:1005.2837] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  63. [63]
    G. Lopes Cardoso et al., NonKähler string backgrounds and their five torsion classes, Nucl. Phys. B 652 (2003) 5 [hep-th/0211118] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    T.A. Ivanova and A.D. Popov, Instantons on special holonomy manifolds, Phys. Rev. D 85 (2012) 105012 [arXiv:1203.2657] [INSPIRE].ADSGoogle Scholar
  65. [65]
    S. Kobayashi and K. Nomizu, Foundations of differential geometry, volume 2, reprint of the 1969 original, John Wiley & Sons, Inc., New York U.S.A. (1996).Google Scholar
  66. [66]
    D. Kapetanakis and G. Zoupanos, Coset space dimensional reduction of gauge theories, Phys. Rept. 219 (1992) 4 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Severin Bunk
    • 1
  • Olaf Lechtenfeld
    • 1
    • 2
    Email author
  • Alexander D. Popov
    • 1
  • Marcus Sperling
    • 1
  1. 1.Institut für Theoretische PhysikLeibniz Universität HannoverHannoverGermany
  2. 2.Riemann Center for Geometry and PhysicsLeibniz Universität HannoverHannoverGermany

Personalised recommendations