Journal of High Energy Physics

, 2014:177 | Cite as

Indirect effects of supersymmetric triplets in stop decays

  • J. de Blas
  • A. Delgado
  • B. OstdiekEmail author
  • M. Quirós
Open Access


We study an extension of the minimal supersymmetric standard model with a zero hypercharge triplet, and the effect that such a particle has on stop decays. This model has the capability of predicting a 125.5 GeV Higgs even in the presence of light stops and it can modify the diphoton rate by means of the extra charged fermion triplet coupled to the Higgs. Working in the limit where the scalar triplet decouples, and with small values of m A , we find that the fermion triplet can greatly affect the branching ratios of the stops, even in the absence of a direct stop-triplet coupling. We compare the triplet extension with the MSSM and discuss how the additional fields affect the search for stop pair production.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s} \) = 7 and 8TeV,JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].ADSGoogle Scholar
  4. [4]
    A. Delgado, G.F. Giudice, G. Isidori, M. Pierini and A. Strumia, The light stop window, Eur. Phys. J. C 73 (2013) 2370 [arXiv:1212.6847] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    K. Agashe, A. Azatov, A. Katz and D. Kim, Improving the tunings of the MSSM by adding triplets and singlet, Phys. Rev. D 84 (2011) 115024 [arXiv:1109.2842] [INSPIRE].ADSGoogle Scholar
  6. [6]
    A. Delgado, G. Nardini and M. Quirós, Large diphoton Higgs rates from supersymmetric triplets, Phys. Rev. D 86 (2012) 115010 [arXiv:1207.6596] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A. Delgado, G. Nardini and M. Quirós, A Light Supersymmetric Higgs Sector Hidden by a Standard Model-like Higgs, JHEP 07 (2013) 054 [arXiv:1303.0800] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    P. Bandyopadhyay, K. Huitu and A. Sabanci, Status of Y = 0 Triplet Higgs with supersymmetry in the light of ∼ 125 GeV Higgs discovery, JHEP 10 (2013) 091 [arXiv:1306.4530] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    CMS collaboration, Search for top-squark pair production in the single-lepton final state in pp collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 73 (2013) 2677 [arXiv:1308.1586] [INSPIRE].ADSGoogle Scholar
  10. [10]
    ATLAS collaboration, Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s} \) = 8 TeV pp collisions with the ATLAS detector, JHEP 10 (2013) 189 [arXiv:1308.2631] [INSPIRE].ADSGoogle Scholar
  11. [11]
    CMS collaboration, Search for supersymmetry in hadronic final states with missing transverse energy using the variables αT and b-quark multiplicity in pp collisions at \( \sqrt{s} \) = 8TeV,Eur. Phys. J. C 73 (2013) 2568 [arXiv:1303.2985] [INSPIRE].ADSGoogle Scholar
  12. [12]
    ATLAS collaboration, Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at \( \sqrt{s} \) = 8 TeV proton-proton collisions using the ATLAS experiment, JHEP 10 (2013) 130 [arXiv:1308.1841] [INSPIRE].ADSGoogle Scholar
  13. [13]
    J. Espinosa and M. Quirós, Higgs triplets in the supersymmetric standard model, Nucl. Phys. B 384 (1992) 113 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the Standard Model Higgs Boson: Alignment without Decoupling, arXiv:1310.2248 [INSPIRE].
  15. [15]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    C. Duhr and B. Fuks, A superspace module for the FeynRules package, Comput. Phys. Commun. 182 (2011) 2404 [arXiv:1102.4191] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • J. de Blas
    • 1
    • 2
  • A. Delgado
    • 2
  • B. Ostdiek
    • 2
    Email author
  • M. Quirós
    • 3
    • 4
  1. 1.INFN, Sezione di RomaRomeItaly
  2. 2.Department of PhysicsUniversity of Notre DameNotre DameU.S.A
  3. 3.Department of Physics, CERN-TH DivisionGeneva 23Switzerland
  4. 4.Institució Catalana de Recerca i Estudis Avançats (ICREA), and Institut de Física d’Altes EnergiesUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations