First look at the physics case of TLEP


The discovery by the ATLAS and CMS experiments of a new boson with mass around 125 GeV and with measured properties compatible with those of a Standard-Model Higgs boson, coupled with the absence of discoveries of phenomena beyond the Standard Model at the TeV scale, has triggered interest in ideas for future Higgs factories. A new circular e+e collider hosted in a 80 to 100 km tunnel, TLEP, is among the most attractive solutions proposed so far. It has a clean experimental environment, produces high luminosity for top-quark, Higgs boson, W and Z studies, accommodates multiple detectors, and can reach energies up to the \( \mathrm{t}\overline{\mathrm{t}} \) threshold and beyond. It will enable measurements of the Higgs boson properties and of Electroweak Symmetry-Breaking (EWSB) parameters with unequalled precision, offering exploration of physics beyond the Standard Model in the multi-TeV range. Moreover, being the natural precursor of the VHE-LHC, a 100 TeV hadron machine in the same tunnel, it builds up a long-term vision for particle physics. Altogether, the combination of TLEP and the VHE-LHC offers, for a great cost effectiveness, the best precision and the best search reach of all options presently on the market. This paper presents a first appraisal of the salient features of the TLEP physics potential, to serve as a baseline for a more extensive design study.


  1. [1]

    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013).

  4. [4]

    ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [arXiv:1307.1427] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    J. Ellis and T. You, Updated global analysis of Higgs couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    H. Baer et al., The International Linear Collider technical design reportVolume 2: physics, arXiv:1306.6352 [INSPIRE].

  8. [8]

    R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure Higgs boson couplings?, Phys. Rev. D 86 (2012) 095001.

    ADS  Google Scholar 

  9. [9]

    M. Koratzinos et al., TLEP: a high-performance circular e + e collider to study the Higgs boson, arXiv:1305.6498 [INSPIRE].

  10. [10]

    J.A. Osborne and C.S. Waaijer, Contribution to the open symposium of the European Strategy Preparatory Group: pre-feasability assessment for an 80 km tunnel project at CERN, see online (2012).

  11. [11]

    A. Blonde et al., Report of the ICFA beam dynamics workshopaccelerators for a Higgs factory: linear vs. circular(HF2012), arXiv:1302.3318 [INSPIRE].

  12. [12]

    CERN-Council, The European strategy for particle physics,

  13. [13]

    CERN, Medium-term plan for the period 2014-2018 and draft budget of the organization for the sixtieth financial year 2014, CERN/SPC/1012 (2013).

  14. [14]

    A. Blondel and F. Zimmermann, A high luminosity e + e collider in the LHC tunnel to study the Higgs Boson, arXiv:1112.2518 [INSPIRE].

  15. [15]

    R. Aßmann and K. Cornelis, The beam-beam interaction in the presence of strong radiation damping, CERN-SL-2000-046-OP (2000).

  16. [16]

    C. Adolphsen et al., The International Linear Collider technical design reportVolume 3.I: accelerator R&D in the technical design phase, arXiv:1306.6353 [INSPIRE].

  17. [17]

    C. Adolphsen, M. Barone, B. Barish, K. Buesser, P. Burrows et al., The International Linear Collider technical design reportVolume 3.II: accelerator baseline design, arXiv:1306.6328 [INSPIRE].

  18. [18]

    M. Aicheler et al., A multi-TeV linear collider based on CLIC technology: CLIC conceptual design report, CERN-2012-007 (2012), see online.

  19. [19]

    M. Harrison, M. Ross and N. Walker, Luminosity upgrades for ILC, arXiv:1308.3726 [INSPIRE].

  20. [20]

    V. Telnov, Limitation on the luminosity of e + e storage rings due to beamstrahlung, PoS (IHEP-LHC) 016 [arXiv:1307.3915] [INSPIRE].

  21. [21]

    V.I. Telnov, Problems of charge compensation in a ring e + e Higgs factory, talk given at the 5th TLEP workshop , July 25-26, FNAL, U.S.A. (2013).

  22. [22]

    K. Yokoya, Scaling of high-energy e + e ring colliders, at KEK Accelerator Seminar (2012).

  23. [23]

    V. Telnov, Restriction on the energy and luminosity of e + e storage rings due to beamstrahlung, Phys. Rev. Lett. 110 (2013) 114801 [arXiv:1203.6563] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    R. Aßmann et al., Calibration of center-of-mass energies at LEP-1 for precise measurements of Z properties, Eur. Phys. J. C 6 (1999) 187 [INSPIRE].

    Article  Google Scholar 

  25. [25]

    LEP Energy Working Group collaboration, R. Aßmann et al., Calibration of centre-of-mass energies at LEP 2 for a precise measurement of the W boson mass, Eur. Phys. J. C 39 (2005) 253 [hep-ex/0410026] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    SLD collaboration, K. Abe et al., A high precision measurement of the left-right Z boson cross-section asymmetry, Phys. Rev. Lett. 84 (2000) 5945 [hep-ex/0004026] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    LHeC Study Group collaboration, J. Abelleira Fernandez et al., A large hadron electron collider at CERN: report on the physics and design concepts for machine and detector, J. Phys. G 39 (2012) 075001 [arXiv:1206.2913] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    A. Blondel and J.M. Jowett, Dedicated wigglers for polarization, CERN-LEP-NOTE-606 (1988).

  29. [29]

    R. Aßmann et al., Experiments on beam-beam depolarization at LEP, in the proceedings of the 1995 Particle Accelerator Conference, May 1-5, Dallas, Texas (1995).

  30. [30]

    G. Hoffstaetter, M. Vogt and F. Willeke, Experience with HERA beams, see online (2003).

  31. [31]

    A. Blondel, A scheme to measure the polarization asymmetry at the Z pole in LEP, Phys. Lett. B 202 (1988) 145 [Erratum ibid. 208 (1988) 531] [INSPIRE].

  32. [32]

    U. Wienans, Is polarization possible in TLEP?, talk given ath the 4th TLEP workshop , April 4-5, CERN, Switzerland (2013).

    Google Scholar 

  33. [33]

    L. Arnaudon et al., Measurement of LEP beam energy by resonant spin depolarization, Phys. Lett. B 284 (1992) 431.

    ADS  Article  MathSciNet  Google Scholar 

  34. [34]

    A. Hinze and K. Monig, Measuring the beam energy with radiative return events, eConf C 050318 (2005) 1109 [physics/0506115] [INSPIRE].

  35. [35]

    T. Behnke et al., The International Linear Collider technical design reportVolume 4: detectors, arXiv:1306.6329 [INSPIRE].

  36. [36]

    P. Azzi et al., Prospective studies for LEP3 with the CMS detector, arXiv:1208.1662 [INSPIRE].

  37. [37]

    LHCb collaboration, Framework TDR for the LHCb upgrade: technical design report, CERN-LHCC-2012-007 (2012).

  38. [38]

    J. Osborne, private communnication (2013).

  39. [39]

    P. Janot and G. Ganis, The HZHA generator, in Physics at LEP2, G. Altarelli, T. Sjøstrand and F. Zwirner eds., CERN Report 96/01 (1996).

  40. [40]

    T. Behnke, J.E. Brau, B. Foster, J. Fuster, M. Harrison et al., The International Linear Collider technical design reportVolume 1: executive summary, arXiv:1306.6327 [INSPIRE].

  41. [41]

    N. Craig, C. Englert and M. McCullough, A new probe of naturalness, Phys. Rev. Lett. 111 (2013) 121803 [arXiv:1305.5251] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    C.F. Dürig, Determination of the Higgs decay width at ILC (Masterarbeit in Physik), Tech. Rep. (2012).

  43. [43]

    M.E. Peskin, Comparison of LHC and ILC capabilities for Higgs boson coupling measurements, arXiv:1207.2516 [INSPIRE].

  44. [44]

    S.P. Martin, Shift in the LHC Higgs diphoton mass peak from interference with background, Phys. Rev. D 86 (2012) 073016 [arXiv:1208.1533] [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    L.J. Dixon and Y. Li, Bounding the Higgs boson width through interferometry, Phys. Rev. Lett. 111 (2013) 111802 [arXiv:1305.3854] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    G.T. Bodwin, F. Petriello, S. Stoynev and M. Velasco, Higgs boson decays to quarkonia and the \( H\overline{c}c \) coupling, Phys. Rev. D 88 (2013) 053003 [arXiv:1306.5770] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    V. Barger, M. Ishida and W.Y. Keung, Total width of 125 GeV Higgs boson, Phys. Rev. Lett. 108 (2012) 261801 [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    CMS collaboration, Projected performance of an upgraded CMS detector at the LHC and HL-LHC: contribution to the snowmass process, arXiv:1307.7135 [INSPIRE].

  49. [49]

    ATLAS collaboration, Physics at a high-luminosity LHC with ATLAS, arXiv:1307.7292 [INSPIRE].

  50. [50]

    O. Buchmueller et al., The CMSSM and NUHM1 in light of 7 TeV LHC, B s μ + μ and XENON100 data, Eur. Phys. J. C 72 (2012) 2243.

    ADS  Article  Google Scholar 

  51. [51]

    LHC Higgs Cross Section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].

  52. [52]

    B. Pietrzyk, LEP asymmetries and fits of the standard model, hep-ex/9406001 [INSPIRE].

  53. [53]

    J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001.

    ADS  Google Scholar 

  54. [54]

    ALEPH, DELPHI, L3, OPAL, and LEP Electroweak Working Group, Precision Electroweak measurements on the Z resonance, Phys. Rep. 427 (2006) 257.

    ADS  Google Scholar 

  55. [55]

    ALEPH, DELPHI, L3, OPAL, LEP Electroweak collaboration, S. Schael et al., Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP, Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    J.R. Espinosa, C. Grojean, V. Sanz and M. Trott, NSUSY fits, JHEP 12 (2012) 077 [arXiv:1207.7355] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    C. Jarlskog, Neutrino counting at the Z-peak and right-handed neutrinos, Phys. Lett. B 241 (1990) 579.

    ADS  Article  Google Scholar 

  58. [58]

    G. Barbiellini et al., Neutrino counting, (1989).

  59. [59]

    OPAL collaboration, G. Abbiendi et al., Photonic events with missing energy in e + e collisions at \( \sqrt{s} \) = 189 GeV, Eur. Phys. J. C 18 (2000) 253 [hep-ex/0005002] [INSPIRE].

    ADS  Google Scholar 

  60. [60]

    ALEPH collaboration, A. Heister et al., Single photon and multiphoton production in e + e collisions at \( \sqrt{s} \) up to 209 GeV, Eur. Phys. J. C 28 (2003) 1 [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    L3 collaboration, P. Achard et al., Single photon and multiphoton events with missing energy in e + e collisions at LEP, Phys. Lett. B 587 (2004) 16 [hep-ex/0402002] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    DELPHI collaboration, J. Abdallah et al., Photon events with missing energy in e + e collisions at \( \sqrt{s} \) = 130 GeV to 209 GeV, Eur. Phys. J. C 38 (2005) 395 [hep-ex/0406019] [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    P. Baikov, K. Chetyrkin and J. Kühn, Order \( \alpha_s^4 \) QCD corrections to Z and τ decays, Phys. Rev. Lett. 101 (2008) 012002.

    ADS  Article  Google Scholar 

  64. [64]

    P.A. Baikov et al., Complete \( O\left( {\alpha_s^4} \right) \) QCD corrections to hadronic Z decays, Phys. Rev. Lett. 108 (2012) 222003.

    ADS  Article  Google Scholar 

  65. [65]

    S. Bethke, α s at Zinnowitz 2004, Nucl. Phys. Proc. Supp. B 135 (2004) 345.

    ADS  Article  Google Scholar 

  66. [66]

    J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett. B 260 (1991) 131 [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    P. Langacker and M.-x. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].

    ADS  Google Scholar 

  69. [69]

    C. Giunti, C. Kim and U. Lee, Running coupling constants and grand unification models, Mod. Phys. Lett. A 6 (1991) 1745 [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    A. Hoang et al., Threshold \( t\overline{t} \) cross section at next-to-next-to-leading logarithmic order, Phys. Rev. D 65 (2001) 014014 [hep-ph/0107144] [INSPIRE].

    ADS  Google Scholar 

  71. [71]

    K. Seidel, F. Simon, M. Tesar and S. Poss, Top quark mass measurements at and above threshold at CLIC, Eur. Phys. J. C 73 (2013) 2530 [arXiv:1303.3758] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    M. Martinez and R. Miquel, Multiparameter fits to the \( t\overline{t} \) threshold observables at a future e + e linear collider, Eur. Phys. J. C 27 (2003) 49 [hep-ph/0207315] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    A. Ferroglia and A. Sirlin, Comparison of the standard theory predictions of m W and sin2 \( \theta_{\mathrm{eff}}^{\mathrm{lept}} \) with their experimental values, Phys. Rev. D 87 (2013) 037501.

    ADS  Google Scholar 

  74. [74]

    S. Heinemeyer and G. Weiglein, Top, GigaZ, MegaW, arXiv:1007.5232 [INSPIRE].

  75. [75]

    F. Jegerlehner, The Running fine structure constant alpha(E) via the Adler function, Nucl. Phys. Proc. Suppl. 181-182 (2008) 135 [arXiv:0807.4206] [INSPIRE].

    Article  Google Scholar 

  76. [76]

    Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies collaboration, S. Actis et al., Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data, Eur. Phys. J. C 66 (2010) 585 [arXiv:0912.0749] [INSPIRE].

    Article  Google Scholar 

  77. [77]

    D. Babusci et al., Proposal for taking data with the KLOE-2 detector at the DAΦNE collider upgraded in energy, arXiv:1007.5219 [INSPIRE].

  78. [78]

    D. Alesini et al., IRIDE white book, an interdisciplinary research infrastructure based on dual electron linacs&lasers, arXiv:1307.7967 [INSPIRE].

  79. [79]

    M. Baak et al., The Electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205.

    ADS  Article  Google Scholar 

  80. [80]

    G. Petrucciani, The ttH coupling measurement at the HL-LHC, talk given at the 6th TLEP Workshop , October 16-18, Fermilab, U.S.A. (2013).

    Google Scholar 

  81. [81]

    ATLAS collaboration, Physics at a high-luminosity lhc with ATLAS, ATL-PHYS-PUB-2012-004 (2012).

  82. [82]

    CMS collaboration, CMS at the high-energy frontier, CMS-2012-006 (2012).

  83. [83]

    M.L. Mangano and J. Rojo, Cross section ratios between different CM energies at the LHC: opportunities for precision measurements and BSM sensitivity, JHEP 08 (2012) 010 [arXiv:1206.3557] [INSPIRE].

    ADS  Article  Google Scholar 

  84. [84]

    S. Dawson et al., The Snowmass Higgs Working group report, in preparation.

  85. [85]

    R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure the Higgs boson mass and self-coupling?, Phys. Rev. D 88 (2013) 055024 [arXiv:1305.6397] [INSPIRE].

    ADS  Google Scholar 

  86. [86]

    T. Plehn and M. Rauch, The quartic Higgs coupling at hadron colliders, Phys. Rev. D 72 (2005) 053008 [hep-ph/0507321] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information




Additional information

ArXiv ePrint: 1308.6176

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Bicer, M., Duran Yildiz, H., Yildiz, I. et al. First look at the physics case of TLEP. J. High Energ. Phys. 2014, 164 (2014).

Download citation


  • e+-e- Experiments