O. Agam, E. Bettelheim, P. Wiegmann and A. Zabrodin, Viscous fingering and a shape of an electronic droplet in the quantum Hall regime, Phys. Rev. Lett.
88 (2002) 236801 [cond-mat/0111333] [INSPIRE].
ADS
Article
Google Scholar
Y. Ameur, H. Hedenmalm and N. Makarov, Random normal matrices and Ward identities, arXiv:1109.5941.
R. Berman, Bergman kernels and equilibrium measures for line bundles over projective manifolds, Amer. J. Math.
131 (2009) 1485 [arXiv:0710.4375].
Article
MATH
MathSciNet
Google Scholar
R.J. Berman, Determinantal point processes and fermions on complex manifolds: bulk universality, arXiv:0811.3341.
R.J. Berman, Determinantal point processes and fermions on complex manifolds: large deviations and bosonization, arXiv:0812.4224.
R.J. Berman, S. Boucksom and D. Witt Nystrom, Fekete points and convergence towards equilibrium measures on complex manifolds, Acta Math.
207 (2011) 1 [arXiv:0907.2820].
Article
MATH
MathSciNet
Google Scholar
R.J. Berman, Kähler-Einstein metrics emerging from free fermions and statistical mechanics, JHEP
10 (2011) 106 [arXiv:1009.2942] [INSPIRE].
ADS
Article
Google Scholar
R.J. Berman, A thermodynamical formalism for Monge-Ampere equations, Moser-Trudinger inequalities and Kähler-Einstein metrics, arXiv:1011.3976.
D. Catlin, The Bergman kernel and a theorem of Tian, in Analysis and geometry in several complex variables, Katata Japan (1997), Trends Math., Birkhäuser, Boston U.S.A. (1999), pg. 1.
L.-L. Chau and Y. Yu, Unitary polynomials in normal matrix model and wave functions for the fractional quantum Hall effect, Phys. Lett.
A 167 (1992) 452.
Article
MathSciNet
Google Scholar
L.-L. Chau and O. Zaboronsky, On the structure of the correlation functions in the normal matrix model, Commun. Math. Phys.
196 (1998) 203 [hep-th/9711091] [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
L. Chekhov and B. Eynard, Hermitean matrix model free energy: Feynman graph technique for all genera, JHEP
03 (2006) 014 [hep-th/0504116] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
X.X. Chen and G. Tian, Ricci flow on Kähler-Einstein surfaces, Invent. Math.
147 (2002) 487 [math.DG/0010008].
ADS
Article
MATH
MathSciNet
Google Scholar
S.K. Donaldson, Scalar curvature and projective embeddings. I, J. Diff. Geom.
59 (2001) 479.
MATH
MathSciNet
Google Scholar
S.K. Donaldson, Scalar curvature and projective embeddings. II, Quart. J. Math.
56 (2005) 345 [math.DG/0407534].
Article
MATH
MathSciNet
Google Scholar
M.R. Douglas and S. Klevtsov, Bergman kernel from path integral, Commun. Math. Phys.
293 (2010) 205 [arXiv:0808.2451] [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
P. Elbau and G. Felder, Density of eigenvalues of random normal matrices, Commun. Math. Phys.
259 (2005) 433 [math.QA/0406604].
ADS
Article
MATH
MathSciNet
Google Scholar
F. Ferrari, S. Klevtsov and S. Zelditch, Random geometry, quantum gravity and the Kähler potential, Phys. Lett.
B 705 (2011) 375 [arXiv:1107.4022] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
F. Ferrari, S. Klevtsov and S. Zelditch, Random Kähler metrics, Nucl. Phys.
B 869 (2013) 89 [arXiv:1107.4575] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
F. Ferrari, S. Klevtsov and S. Zelditch, Gravitational actions in two dimensions and the Mabuchi functional, Nucl. Phys.
B 859 (2012) 341 [arXiv:1112.1352] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
F. Ferrari, S. Klevtsov and S. Zelditch, Simple matrix models for random Bergman metrics, J. Stat. Mech.
2012 (2012) P04012 [arXiv:1112.4382] [INSPIRE].
Article
MathSciNet
Google Scholar
J. Fine, Quantisation and the Hessian of Mabuchi energy, Duke Math. J.
161 (2012) 2753 [arXiv:1009.4543].
Article
MATH
MathSciNet
Google Scholar
H. Hedenmalm and A. Haimi, Asymptotic expansion of polyanalytic Bergman kernels, arXiv:1303.0720.
H. Hedenmalm and N. Makarov, Quantum Hele-Shaw flow, math.PR/0411437.
H. Hedenmalm and N. Makarov, Coulomb gas ensembles and Laplacian growth, Proc. London Math. Soc.
106 (2013) 859 [arXiv:1106.2971].
Article
MATH
MathSciNet
Google Scholar
D. Karabali and V. Nair, Quantum Hall effect in higher dimensions, Nucl. Phys.
B 641 (2002) 533 [hep-th/0203264] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
D. Karabali and V. Nair, The effective action for edge states in higher dimensional quantum Hall systems, Nucl. Phys.
B 679 (2004) 427 [hep-th/0307281] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
D. Karabali and V. Nair, Edge states for quantum Hall droplets in higher dimensions and a generalized WZW model, Nucl. Phys.
B 697 (2004) 513 [hep-th/0403111] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
V.A. Kazakov, M. Staudacher and T. Wynter, Exact solution of discrete two-dimensional R
2
gravity, Nucl. Phys.
B 471 (1996) 309 [hep-th/9601069] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
S. Klevtsov, Bergman kernel from the lowest Landau level, Nucl. Phys. (Proc. Suppl.)
B 192-193 (2011) 154 [INSPIRE].
ADS
MathSciNet
Google Scholar
Z. Lu, On the lower order terms of the asymptotic expansion of Zelditch, Amer. J. Math.
122 (2000) 235 [math.DG/9811126].
Article
MATH
MathSciNet
Google Scholar
X. Ma and G. Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progr. Math.
254, Birkhäuser Boston U.S.A. (2006).
X. Ma and G. Marinescu, Berezin-Toeplitz quantization on Kähler manifolds, J. Reine Angew. Math.
662 (2012) 1 [arXiv:1009.4405].
MATH
MathSciNet
Google Scholar
A. Marshakov, P. Wiegmann and A. Zabrodin, Integrable structure of the Dirichlet boundary problem in two-dimensions, Commun. Math. Phys.
227 (2002) 131 [hep-th/0109048] [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
D.H. Phong and J. Sturm, Lectures on stability and constant scalar curvature, Curr. Devel. Math.
2007 (2009) 101, Int. Press, Somerville U.S.A. (2009) [arXiv:0801.4179].
R. Teodorescu, E. Bettelheim, O. Agam, A. Zabrodin and P. Wiegmann, Normal random matrix ensemble as a growth problem: evolution of the spectral curve, Nucl. Phys.
B 704 (2005) 407 [hep-th/0401165] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
G. Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Diff. Geom.
32 (1990) 99.
MATH
Google Scholar
H. Xu, A closed formula for the asymptotic expansion of the Bergman kernel, Commun. Math. Phys.
314 (2012) 555 [arXiv:1103.3060].
ADS
Article
MATH
Google Scholar
P. Wiegmann and A. Zabrodin, Conformal maps and dispersionless integrable hierarchies, Commun. Math. Phys.
213 (2000) 523 [hep-th/9909147] [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
P. Wiegmann and A. Zabrodin, Large-N expansion for normal and complex matrix ensembles, in Proc. of Les Houches Spring School, (2003) [hep-th/0309253] [INSPIRE].
A. Zabrodin, Matrix models and growth processes: from viscous flows to the quantum Hall effect, in Applications of random matrices in physics, Springer U.S.A. (2006), pg. 261 [hep-th/0412219] [INSPIRE].
P. Wiegmann and A. Zabrodin, Large-N expansion of the 2D Dyson gas, J. Phys.
A 39 (2006) 8933 [hep-th/0601009] [INSPIRE].
ADS
MathSciNet
Google Scholar
O. Zeitouni and S. Zelditch, Large deviations of empirical zero point measures on Riemann surfaces, I: g = 0, Int. Math. Res. Notices
2010 (2010) 3939 [arXiv:0904.4271].
Google Scholar
S. Zelditch, Szegö kernels and a theorem of Tian, Int. Math. Res. Notices
1998 (1998) 317 [math-ph/0002009].
Article
MATH
MathSciNet
Google Scholar
S. Zelditch, Large deviations of empirical measures of zeros on Riemann surfaces, Int. Math. Res. Notices
2013 (2013) 592 [arXiv:1101.0417].
MathSciNet
Google Scholar
S.-C. Zhang and J.-P. Hu, A four-dimensional generalization of the quantum Hall effect, Science
294 (2001) 823 [cond-mat/0110572] [INSPIRE].
ADS
Article
Google Scholar
J.-P. Hu and S.-C. Zhang, Collective excitations at the boundary of a 4D quantum Hall droplet, Phys. Rev.
B 66 (2002) 125301 [cond-mat/0112432] [INSPIRE].
ADS
Article
Google Scholar