Skip to main content

Linking natural supersymmetry to flavour physics

Abstract

With the aim of linking natural supersymmetry to flavour physics, a model is proposed based on a family symmetry G × U(1), where G is a discrete nonabelian subgroup of SU(2), with both F-term and (abelian) D-term supersymmetry breaking. A good fit to the fermion masses and mixing is obtained with the same U(1) charges for the left- and right- handed quarks of the first two families and the right-handed bottom quark, and with zero charge for the left-handed top-bottom doublet and the the right handed top. The model shows an interesting indirect correlation between the correct prediction for the V ub /V cb ratio and large right-handed rotations in the (s, b) sector, required to diagonalise the Yukawa matrix. For the squarks, one obtains almost degenerate first two generations. The main source of the FCNC and CP violation effects is the splitting between the first two families and the right-handed sbottom determined by the relative size of F-term and D-term supersymmetry breaking. The presence of the large right-handed rotation implies that the bounds on the masses of the first two families of squarks and the right handed sbottom are in a few to a few tens TeV range. The picture that emerges is light stops and left handed sbottom and much heavier other squarks.

References

  1. A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric Standard Model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].

    ADS  Article  Google Scholar 

  2. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb−1 of \( \sqrt{s} \) = 7 TeV proton-proton collision data, Phys. Rev. D 87 (2013) 012008 [arXiv:1208.0949] [INSPIRE].

    ADS  Google Scholar 

  3. CMS collaboration, Search for supersymmetry in hadronic final states using MT2 in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 10 (2012) 018 [arXiv:1207.1798] [INSPIRE].

    ADS  Google Scholar 

  4. R. Mahbubani, M. Papucci, G. Perez, J.T. Ruderman and A. Weiler, Light nondegenerate squarks at the LHC, Phys. Rev. Lett. 110 (2013) 151804 [arXiv:1212.3328] [INSPIRE].

    ADS  Article  Google Scholar 

  5. M. Blanke, G.F. Giudice, P. Paradisi, G. Perez and J. Zupan, Flavoured naturalness, JHEP 06 (2013) 022 [arXiv:1302.7232] [INSPIRE].

    ADS  Article  Google Scholar 

  6. I. Galon, G. Perez and Y. Shadmi, Non-degenerate squarks from flavored gauge mediation, JHEP 09 (2013) 117 [arXiv:1306.6631] [INSPIRE].

    ADS  Article  Google Scholar 

  7. T. Gherghetta, B. von Harling and N. Setzer, A natural little hierarchy for RS from accidental SUSY, JHEP 07 (2011) 011 [arXiv:1104.3171] [INSPIRE].

    ADS  Article  Google Scholar 

  8. C. Csáki, L. Randall and J. Terning, Light stops from Seiberg duality, Phys. Rev. D 86 (2012) 075009 [arXiv:1201.1293] [INSPIRE].

    ADS  Google Scholar 

  9. G. Larsen, Y. Nomura and H.L. Roberts, Supersymmetry with light stops, JHEP 06 (2012) 032 [arXiv:1202.6339] [INSPIRE].

    ADS  Article  Google Scholar 

  10. N. Craig, M. McCullough and J. Thaler, The new flavor of higgsed gauge mediation, JHEP 03 (2012) 049 [arXiv:1201.2179] [INSPIRE].

    ADS  Article  Google Scholar 

  11. N. Craig, M. McCullough and J. Thaler, Flavor mediation delivers natural SUSY, JHEP 06 (2012) 046 [arXiv:1203.1622] [INSPIRE].

    ADS  Article  Google Scholar 

  12. R. Auzzi, A. Giveon, S.B. Gudnason and T. Shacham, A light stop with flavor in natural SUSY, JHEP 01 (2013) 169 [arXiv:1208.6263] [INSPIRE].

    ADS  Article  Google Scholar 

  13. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].

    ADS  Article  Google Scholar 

  14. C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].

    ADS  Article  Google Scholar 

  15. H. Baer, V. Barger, P. Huang and X. Tata, Natural supersymmetry: LHC, dark matter and ILC searches, JHEP 05 (2012) 109 [arXiv:1203.5539] [INSPIRE].

    ADS  Article  Google Scholar 

  16. P. Binetruy and E. Dudas, Gaugino condensation and the anomalous U(1), Phys. Lett. B 389 (1996) 503 [hep-th/9607172] [INSPIRE].

    ADS  Article  Google Scholar 

  17. G. Dvali and A. Pomarol, Anomalous U(1) as a mediator of supersymmetry breaking, Phys. Rev. Lett. 77 (1996) 3728 [hep-ph/9607383] [INSPIRE].

    ADS  Article  Google Scholar 

  18. N. Arkani-Hamed and H. Murayama, Can the supersymmetric flavor problem decouple?, Phys. Rev. D 56 (1997) 6733 [hep-ph/9703259] [INSPIRE].

    ADS  Google Scholar 

  19. F. Brummer, S. Kraml and S. Kulkarni, Anatomy of maximal stop mixing in the MSSM, JHEP 08 (2012) 089 [arXiv:1204.5977] [INSPIRE].

    ADS  Article  Google Scholar 

  20. M. Badziak, E. Dudas, M. Olechowski and S. Pokorski, Inverted sfermion mass hierarchy and the Higgs boson mass in the MSSM, JHEP 07 (2012) 155 [arXiv:1205.1675] [INSPIRE].

    ADS  Article  Google Scholar 

  21. M. Dine, R.G. Leigh and A. Kagan, Flavor symmetries and the problem of squark degeneracy, Phys. Rev. D 48 (1993) 4269 [hep-ph/9304299] [INSPIRE].

    ADS  Google Scholar 

  22. A. Pomarol and D. Tommasini, Horizontal symmetries for the supersymmetric flavor problem, Nucl. Phys. B 466 (1996) 3 [hep-ph/9507462] [INSPIRE].

    ADS  Article  Google Scholar 

  23. C. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

    ADS  Article  Google Scholar 

  24. M. Leurer, Y. Nir and N. Seiberg, Mass matrix models, Nucl. Phys. B 398 (1993) 319 [hep-ph/9212278] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  25. M. Leurer, Y. Nir and N. Seiberg, Mass matrix models: the sequel, Nucl. Phys. B 420 (1994) 468 [hep-ph/9310320] [INSPIRE].

    ADS  Article  Google Scholar 

  26. E. Dudas, S. Pokorski and C.A. Savoy, Soft scalar masses in supergravity with horizontal U(1)x gauge symmetry, Phys. Lett. B 369 (1996) 255 [hep-ph/9509410] [INSPIRE].

    ADS  Article  Google Scholar 

  27. Y. Kawamura and T. Kobayashi, Soft scalar masses in string models with anomalous U(1) symmetry, Phys. Lett. B 375 (1996) 141 [Erratum ibid. B 388 (1996) 867] [hep-ph/9601365] [INSPIRE].

    ADS  Article  Google Scholar 

  28. E. Dudas, C. Grojean, S. Pokorski and C.A. Savoy, Abelian flavor symmetries in supersymmetric models, Nucl. Phys. B 481 (1996) 85 [hep-ph/9606383] [INSPIRE].

    ADS  Article  Google Scholar 

  29. A.E. Nelson and D. Wright, Horizontal, anomalous U(1) symmetry for the more minimal supersymmetric Standard Model, Phys. Rev. D 56 (1997) 1598 [hep-ph/9702359] [INSPIRE].

    ADS  Google Scholar 

  30. P.H. Chankowski, K. Kowalska, S. Lavignac and S. Pokorski, Update on fermion mass models with an anomalous horizontal U(1) symmetry, Phys. Rev. D 71 (2005) 055004 [hep-ph/0501071] [INSPIRE].

    ADS  Google Scholar 

  31. P.H. Chankowski, K. Kowalska, S. Lavignac and S. Pokorski, Flavor changing neutral currents and inverted sfermion mass hierarchy, hep-ph/0507133 [INSPIRE].

  32. Y. Nir and N. Seiberg, Should squarks be degenerate?, Phys. Lett. B 309 (1993) 337 [hep-ph/9304307] [INSPIRE].

    ADS  Article  Google Scholar 

  33. O. Gedalia, J.F. Kamenik, Z. Ligeti and G. Perez, On the universality of CP-violation in ΔF = 1 processes, Phys. Lett. B 714 (2012) 55 [arXiv:1202.5038] [INSPIRE].

    ADS  Article  Google Scholar 

  34. R. Barbieri, G. Dvali and L.J. Hall, Predictions from a U(2) flavor symmetry in supersymmetric theories, Phys. Lett. B 377 (1996) 76 [hep-ph/9512388] [INSPIRE].

    ADS  Article  Google Scholar 

  35. R. Barbieri, L.J. Hall and A. Romanino, Consequences of a U(2) flavor symmetry, Phys. Lett. B 401 (1997) 47 [hep-ph/9702315] [INSPIRE].

    ADS  Article  Google Scholar 

  36. R. Roberts, A. Romanino, G.G. Ross and L. Velasco-Sevilla, Precision test of a fermion mass texture, Nucl. Phys. B 615 (2001) 358 [hep-ph/0104088] [INSPIRE].

    ADS  Article  Google Scholar 

  37. R. Dermisek and S. Raby, Fermion masses and neutrino oscillations in SO(10) SUSY GUT with D 3 × U(1) family symmetry, Phys. Rev. D 62 (2000) 015007 [hep-ph/9911275] [INSPIRE].

    ADS  Google Scholar 

  38. K. Babu and R. Mohapatra, Supersymmetry, local horizontal unification and a solution to the flavor puzzle, Phys. Rev. Lett. 83 (1999) 2522 [hep-ph/9906271] [INSPIRE].

    ADS  Article  Google Scholar 

  39. T. Kobayashi, H.P. Nilles, F. Ploger, S. Raby and M. Ratz, Stringy origin of non-Abelian discrete flavor symmetries, Nucl. Phys. B 768 (2007) 135 [hep-ph/0611020] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  40. H.P. Nilles, M. Ratz and P.K. Vaudrevange, Origin of family symmetries, Fortsch. Phys. 61 (2013) 493 [arXiv:1204.2206] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  41. M.-C. Chen, M. Ratz and A. Trautner, Non-Abelian discrete R symmetries, JHEP 09 (2013) 096 [arXiv:1306.5112] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  42. M. Berasaluce-Gonzalez, L.E. Ibáñez, P. Soler and A.M. Uranga, Discrete gauge symmetries in D-brane models, JHEP 12 (2011) 113 [arXiv:1106.4169] [INSPIRE].

    ADS  Article  Google Scholar 

  43. M. Berasaluce-Gonzalez, P. Camara, F. Marchesano, D. Regalado and A. Uranga, Non-Abelian discrete gauge symmetries in 4d string models, JHEP 09 (2012) 059 [arXiv:1206.2383] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  44. P. Anastasopoulos, M. Cvetič, R. Richter and P.K. Vaudrevange, String constraints on discrete symmetries in MSSM type II quivers, JHEP 03 (2013) 011 [arXiv:1211.1017] [INSPIRE].

    ADS  Article  Google Scholar 

  45. G. Honecker and W. Staessens, D6-brane model building and discrete symmetries on T 6 /(Z 2 × Z 6 × ΩR) with discrete torsion, PoS (Corfu2012) 107 [arXiv:1303.6845] [INSPIRE].

  46. F. Marchesano, D. Regalado and L. Vazquez-Mercado, Discrete flavor symmetries in D-brane models, JHEP 09 (2013) 028 [arXiv:1306.1284] [INSPIRE].

    ADS  Article  Google Scholar 

  47. L.E. Ibáñez and G.G. Ross, Fermion masses and mixing angles from gauge symmetries, Phys. Lett. B 332 (1994) 100 [hep-ph/9403338] [INSPIRE].

    ADS  Article  Google Scholar 

  48. P. Binetruy and P. Ramond, Yukawa textures and anomalies, Phys. Lett. B 350 (1995) 49 [hep-ph/9412385] [INSPIRE].

    ADS  Article  Google Scholar 

  49. E. Dudas, S. Pokorski and C.A. Savoy, Yukawa matrices from a spontaneously broken Abelian symmetry, Phys. Lett. B 356 (1995) 45 [hep-ph/9504292] [INSPIRE].

    ADS  Article  Google Scholar 

  50. Y. Nir, Gauge unification, Yukawa hierarchy and the μ problem, Phys. Lett. B 354 (1995) 107 [hep-ph/9504312] [INSPIRE].

    ADS  Article  Google Scholar 

  51. P. Binetruy, S. Lavignac and P. Ramond, Yukawa textures with an anomalous horizontal Abelian symmetry, Nucl. Phys. B 477 (1996) 353 [hep-ph/9601243] [INSPIRE].

    ADS  Article  Google Scholar 

  52. N. Irges, S. Lavignac and P. Ramond, Predictions from an anomalous U(1) model of Yukawa hierarchies, Phys. Rev. D 58 (1998) 035003 [hep-ph/9802334] [INSPIRE].

    ADS  Google Scholar 

  53. H.K. Dreiner, H. Murayama and M. Thormeier, Anomalous flavor UX(1) for everything, Nucl. Phys. B 729 (2005) 278 [hep-ph/0312012] [INSPIRE].

    ADS  Article  Google Scholar 

  54. L.E. Ibáñez, Computing the weak mixing angle from anomaly cancellation, Phys. Lett. B 303 (1993) 55 [hep-ph/9205234] [INSPIRE].

    ADS  Article  Google Scholar 

  55. M.B. Green and J.H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett. B 149 (1984) 117 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  56. M. Olechowski and S. Pokorski, Heavy top quark and scale dependence of quark mixing, Phys. Lett. B 257 (1991) 388 [INSPIRE].

    ADS  Article  Google Scholar 

  57. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  58. A. Blum, C. Hagedorn and M. Lindner, Fermion masses and mixings from dihedral flavor symmetries with preserved subgroups, Phys. Rev. D 77 (2008) 076004 [arXiv:0709.3450] [INSPIRE].

    ADS  Google Scholar 

  59. F. Mescia and J. Virto, Natural SUSY and kaon mixing in view of recent results from lattice QCD, Phys. Rev. D 86 (2012) 095004 [arXiv:1208.0534] [INSPIRE].

    ADS  Google Scholar 

  60. ETM collaboration, V. Bertone et al., Kaon mixing beyond the SM from N f = 2 tmQCD and model independent constraints from the UTA, JHEP 03 (2013) 089 [Erratum ibid. 07 (2013) 143] [arXiv:1207.1287] [INSPIRE].

    ADS  Article  Google Scholar 

  61. J.S. Hagelin, S. Kelley and T. Tanaka, Supersymmetric flavor changing neutral currents: exact amplitudes and phenomenological analysis, Nucl. Phys. B 415 (1994) 293 [INSPIRE].

    ADS  Article  Google Scholar 

  62. F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the Standard Model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].

    ADS  Article  Google Scholar 

  63. Z. Lalak, S. Pokorski and G.G. Ross, Beyond MFV in family symmetry theories of fermion masses, JHEP 08 (2010) 129 [arXiv:1006.2375] [INSPIRE].

    ADS  Article  Google Scholar 

  64. G.F. Giudice, M. Nardecchia and A. Romanino, Hierarchical soft terms and flavor physics, Nucl. Phys. B 813 (2009) 156 [arXiv:0812.3610] [INSPIRE].

    ADS  Article  Google Scholar 

  65. J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric Standard Model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].

    ADS  Google Scholar 

  66. MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e +γ decay, Phys. Rev. Lett. 110 (2013) 201801 [arXiv:1303.0754] [INSPIRE].

    ADS  Article  Google Scholar 

  67. B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  68. J. Rosiek, Complete set of Feynman rules for the minimal supersymmetric extension of the Standard Model, Phys. Rev. D 41 (1990) 3464 [Erratum hep-ph/9511250] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Ziegler.

Additional information

ArXiv ePrint: 1308.1090

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Dudas, E., von Gersdorff, G., Pokorski, S. et al. Linking natural supersymmetry to flavour physics. J. High Energ. Phys. 2014, 117 (2014). https://doi.org/10.1007/JHEP01(2014)117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2014)117

Keywords

  • Supersymmetry Breaking
  • Quark Masses and SM Parameters
  • Supersymmetric Standard Model