Skip to main content

Study of forward Z + jet production in pp collisions at \( \sqrt{s} \) = 7 TeV

Abstract

A measurement of the Z(→ μ + μ ) + jet production cross-section in pp collisions at a centre-of-mass energy \( \sqrt{s} \) = 7 TeV is presented. The analysis is based on an integrated luminosity of 1.0 fb−1 recorded by the LHCb experiment. Results are shown with two jet transverse momentum thresholds, 10 and 20 GeV, for both the overall cross-section within the fiducial volume, and for six differential cross-section measurements. The fiducial volume requires that both the jet and the muons from the Z boson decay are produced in the forward direction (2.0 < η < 4.5). The results show good agreement with theoretical predictions at the second-order expansion in the coupling of the strong interaction.

References

  1. R. Thorne, A. Martin, W. Stirling and G. Watt, Parton distributions and QCD at LHCb, arXiv:0808.1847 [INSPIRE].

  2. LHCb collaboration, Inclusive W and Z production in the forward region at \( \sqrt{s} \) = 7 TeV, JHEP 06 (2012) 058 [arXiv:1204.1620] [INSPIRE].

    Google Scholar 

  3. LHCb collaboration, Measurement of the cross-section for Ze + e production in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 02 (2013) 106 [arXiv:1212.4620] [INSPIRE].

    Google Scholar 

  4. LHCb collaboration, A study of the Z production cross-section in pp collisions at \( \sqrt{s} \) = 7 TeV using tau final states, JHEP 01 (2013) 111 [arXiv:1210.6289] [INSPIRE].

    Google Scholar 

  5. S.A. Malik and G. Watt, Ratios of W and Z cross sections at large boson p T as a constraint on PDFs and background to new physics, arXiv:1304.2424 [INSPIRE].

  6. ATLAS collaboration, Measurement of the production cross section of jets in association with a Z boson in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 07 (2013) 032 [arXiv:1304.7098] [INSPIRE].

    ADS  Google Scholar 

  7. CMS collaboration, Event shapes and azimuthal correlations in Z + jets events in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 722 (2013) 238 [arXiv:1301.1646] [INSPIRE].

    ADS  Google Scholar 

  8. CMS collaboration, Rapidity distributions in exclusive Z + jet and photon + jet events in pp collisions at \( \sqrt{s} \) = 7 TeV, arXiv:1310.3082 [INSPIRE].

  9. F. Hautmann, M. Hentschinski and H. Jung, Forward Z-boson production and the unintegrated sea quark density, Nucl. Phys. B 865 (2012) 54 [arXiv:1205.1759] [INSPIRE].

    ADS  Article  Google Scholar 

  10. P.B. Arnold and M.H. Reno, The complete computation of high p T W and Z production in 2nd order QCD, Nucl. Phys. B 319 (1989) 37 [Erratum ibid. B 330 (1990) 284] [INSPIRE].

    ADS  Article  Google Scholar 

  11. W. Giele, E.N. Glover and D.A. Kosower, Higher order corrections to jet cross-sections in hadron colliders, Nucl. Phys. B 403 (1993) 633 [hep-ph/9302225] [INSPIRE].

    ADS  Article  Google Scholar 

  12. C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].

    ADS  Google Scholar 

  13. R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [arXiv:1011.3540] [INSPIRE].

    ADS  Article  Google Scholar 

  14. J.M. Campbell and R. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].

    ADS  Article  Google Scholar 

  15. S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP 01 (2011) 095 [arXiv:1009.5594] [INSPIRE].

    ADS  Article  Google Scholar 

  16. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].

    ADS  Article  Google Scholar 

  17. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].

    ADS  Article  Google Scholar 

  18. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    ADS  Article  Google Scholar 

  19. LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].

  20. M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C 73 (2013) 2431 [arXiv:1211.6759] [INSPIRE].

    ADS  Article  Google Scholar 

  21. J. Alves Jr. et al., Performance of the LHCb muon system, 2013 JINST 8 P02022 [arXiv:1211.1346] [INSPIRE].

  22. R. Aaij et al., The LHCb trigger and its performance in 2011, 2013 JINST 8 P04022 [arXiv:1211.3055] [INSPIRE].

  23. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  Google Scholar 

  24. I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, IEEE Nucl Sci. Symp. Conf. Rec. (2010) 1155.

  25. P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].

    ADS  Google Scholar 

  26. D. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].

    ADS  Article  Google Scholar 

  27. P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].

    ADS  Article  Google Scholar 

  28. GEANT4 collaboration, J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.

    ADS  Article  Google Scholar 

  29. GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

    ADS  Article  Google Scholar 

  30. M. Clemencic et al., The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023 [INSPIRE].

    ADS  Article  Google Scholar 

  31. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

    ADS  Article  Google Scholar 

  32. A. Jaeger et al., Measurement of the track finding efficiency, LHCb-PUB-2011-025 (2011).

  33. G. D’Agostini, A multidimensional unfolding method based on Bayestheorem, Nucl. Instrum. Meth. A 362 (1995) 487 [INSPIRE].

    ADS  Article  Google Scholar 

  34. T. Adye, Unfolding algorithms and tests using RooUnfold, in PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, January 17-20, CERN, Geneva, Switzerland (2011), arXiv:1105.1160 [INSPIRE].

  35. A. Hocker and V. Kartvelishvili, SVD approach to data unfolding, Nucl. Instrum. Meth. A 372 (1996) 469 [hep-ph/9509307] [INSPIRE].

    ADS  Article  Google Scholar 

  36. LHCb collaboration, R. Aaij et al., Absolute luminosity measurements with the LHCb detector at the LHC, 2012 JINST 7 P01010 [arXiv:1110.2866] [INSPIRE].

  37. M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    ADS  Article  Google Scholar 

  38. P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

    ADS  Article  Google Scholar 

  39. S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].

    ADS  Article  Google Scholar 

  40. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    ADS  Article  Google Scholar 

  41. P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].

    ADS  Google Scholar 

  42. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    ADS  Article  Google Scholar 

  43. H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].

    ADS  Google Scholar 

  44. R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors